skip to main content


Title: Automatic Synonym Discovery with Knowledge Bases
Recognizing entity synonyms from text has become a crucial task in many entity-leveraging applications. However, discovering entity synonyms from domain-specific text corpora (e.g., news articles, scientific papers) is rather challenging. Current systems take an entity name string as input to find out other names that are synonymous, ignoring the fact that often times a name string can refer to multiple entities (e.g., “apple” could refer to both Apple Inc and the fruit apple). Moreover, most existing methods require training data manually created by domain experts to construct supervised learning systems. In this paper, we study the problem of automatic synonym discovery with knowledge bases, that is, identifying synonyms for knowledge base entities in a given domain-specific corpus. The manually-curated synonyms for each entity stored in a knowledge base not only form a set of name strings to disambiguate the meaning for each other, but also can serve as “distant” supervision to help determine important features for the task. We propose a novel framework, called DPE, to integrate two kinds of mutually complementing signals for synonym discovery, i.e., distributional features based on corpus-level statistics and textual patterns based on local contexts. In particular, DPE jointly optimizes the two kinds of signals in conjunction with distant supervision, so that they can mutually enhance each other in the training stage. At the inference stage, both signals will be utilized to discover synonyms for the given entities. Experimental results prove the effectiveness of the proposed framework.  more » « less
Award ID(s):
1704532 1618481 1741317
NSF-PAR ID:
10059911
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 23rd {ACM} {SIGKDD} International Conference on Knowledge Discovery and Data Mining
Volume:
23
Issue:
1
Page Range / eLocation ID:
997 to 1005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extracting entities and their relations from text is an important task for understanding massive text corpora. Open information extraction (IE) systems mine relation tuples (i.e., entity arguments and a predicate string to describe their relation) from sentences. However, current open IE systems ignore the fact that global statistics in a large corpus can be collectively leveraged to identify high-quality sentence-level extractions. In this paper, we propose a novel open IE system, called ReMine, which integrates local context signal and global structural signal in a unified framework with distant supervision. The new system can be efficiently applied to different domains as it uses facts from external knowledge bases as supervision; and can effectively score sentence-level tuple extractions based on corpus-level statistics. Specifically, we design a joint optimization problem to unify (1) segmenting entity/relation phrases in individual sentences based on local context; and (2) measuring the quality of sentence-level extractions with a translating-based objective. Experiments on real-world corpora from different domains demonstrate the effectiveness and robustness of ReMine when compared to other open IE systems. 
    more » « less
  2. Extracting entities and their relations from text is an important task for understanding massive text corpora. Open information extraction (IE) systems mine relation tuples (i.e., entity arguments and a predicate string to describe their relation) from sentences. However, current open IE systems ignore the fact that global statistics in a large corpus can be collectively leveraged to identify high-quality sentence-level extractions. In this paper, we propose a novel open IE system, called ReMine, which integrates local context signal and global structural signal in a unified framework with distant supervision. The new system can be efficiently applied to different domains as it uses facts from external knowledge bases as supervision; and can effectively score sentence-level tuple extractions based on corpus-level statistics. Specifically, we design a joint optimization problem to unify (1) segmenting entity/relation phrases in individual sentences based on local context; and (2) measuring the quality of sentence-level extractions with a translating-based objective. Experiments on real-world corpora from different domains demonstrate the effectiveness and robustness of ReMine when compared to other open IE systems. 
    more » « less
  3. null (Ed.)
    Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependences. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have similar likelihoods of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities’ infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks. 
    more » « less
  4. Entity linking is the task of linking mentions of named entities in natural language text, to entities in a curated knowledge-base. This is of significant importance in the biomedical domain, where it could be used to semantically annotate a large volume of clinical records and biomedical literature, to standardized concepts described in an ontology such as Unified Medical Language System (UMLS). We observe that with precise type information, entity disambiguation becomes a straightforward task. However, fine-grained type information is usually not available in biomedical domain. Thus, we propose LATTE, a LATent Type Entity Linking model, that improves entity linking by modeling the latent fine-grained type information about mentions and entities. Unlike previous methods that perform entity linking directly between the mentions and the entities, LATTE jointly does entity disambiguation, and latent fine-grained type learning, without direct supervision. We evaluate our model on two biomedical datasets: MedMentions, a large scale public dataset annotated with UMLS concepts, and a de-identified corpus of dictated doctor’s notes that has been annotated with ICD concepts. Extensive experimental evaluation shows our model achieves significant performance improvements over several state-of-the-art techniques. 
    more » « less
  5. Extracting relations from text corpora is an important task with wide applications. However, it becomes particularly challenging when focusing on weakly-supervised relation extraction, that is, utilizing a few relation instances (i.e., a pair of entities and their relation) as seeds to extract from corpora more instances of the same relation. Existing distributional approaches leverage the corpuslevel co-occurrence statistics of entities to predict their relations, and require a large number of labeled instances to learn effective relation classiffers. Alternatively, pattern-based approaches perform boostrapping or apply neural networks to model the local contexts, but still rely on a large number of labeled instances to build reliable models. In this paper, we study the integration of distributional and pattern-based methods in a weakly-supervised setting such that the two kinds of methods can provide complementary supervision for each other to build an effective, uniffed model. We propose a novel co-training framework with a distributional module and a pattern module. During training, the distributional module helps the pattern module discriminate between the informative patterns and other patterns, and the pattern module generates some highly-conffdent instances to improve the distributional module. The whole framework can be effectively optimized by iterating between improving the pattern module and updating the distributional module. We conduct experiments on two tasks: knowledge base completion with text corpora and corpus-level relation extraction. Experimental results prove the effectiveness of our framework over many competitive baselines. 
    more » « less