skip to main content


This content will become publicly available on March 25, 2025

Title: Seed-Guided Fine-Grained Entity Typing in Science and Engineering Domains

Accurately typing entity mentions from text segments is a fundamental task for various natural language processing applications. Many previous approaches rely on massive human-annotated data to perform entity typing. Nevertheless, collecting such data in highly specialized science and engineering domains (e.g., software engineering and security) can be time-consuming and costly, without mentioning the domain gaps between training and inference data if the model needs to be applied to confidential datasets. In this paper, we study the task of seed-guided fine-grained entity typing in science and engineering domains, which takes the name and a few seed entities for each entity type as the only supervision and aims to classify new entity mentions into both seen and unseen types (i.e., those without seed entities). To solve this problem, we propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus using the contextualized representations of pre-trained language models. It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types. Extensive experiments on two datasets covering four domains demonstrate the effectiveness of SEType in comparison with various baselines. Code and data are available at: https://github.com/yuzhimanhua/SEType.

 
more » « less
Award ID(s):
1956151
NSF-PAR ID:
10540600
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Wooldridge, Michael J; Dy, Jennifer G; Natarajan, Sriraam
Publisher / Repository:
{AAAI} Press
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Edition / Version:
1
Volume:
38
Issue:
17
ISSN:
2159-5399
Page Range / eLocation ID:
19606 to 19614
Subject(s) / Keyword(s):
Seed-Guided Fine-Grained Entity Typing Science and Engineering Applications Text Mining NLP Language Models
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Entity linking is the task of linking mentions of named entities in natural language text, to entities in a curated knowledge-base. This is of significant importance in the biomedical domain, where it could be used to semantically annotate a large volume of clinical records and biomedical literature, to standardized concepts described in an ontology such as Unified Medical Language System (UMLS). We observe that with precise type information, entity disambiguation becomes a straightforward task. However, fine-grained type information is usually not available in biomedical domain. Thus, we propose LATTE, a LATent Type Entity Linking model, that improves entity linking by modeling the latent fine-grained type information about mentions and entities. Unlike previous methods that perform entity linking directly between the mentions and the entities, LATTE jointly does entity disambiguation, and latent fine-grained type learning, without direct supervision. We evaluate our model on two biomedical datasets: MedMentions, a large scale public dataset annotated with UMLS concepts, and a de-identified corpus of dictated doctor’s notes that has been annotated with ICD concepts. Extensive experimental evaluation shows our model achieves significant performance improvements over several state-of-the-art techniques. 
    more » « less
  2. Abstract The task of ultra-fine entity typing (UFET) seeks to predict diverse and free-form words or phrases that describe the appropriate types of entities mentioned in sentences. A key challenge for this task lies in the large number of types and the scarcity of annotated data per type. Existing systems formulate the task as a multi-way classification problem and train directly or distantly supervised classifiers. This causes two issues: (i) the classifiers do not capture the type semantics because types are often converted into indices; (ii) systems developed in this way are limited to predicting within a pre-defined type set, and often fall short of generalizing to types that are rarely seen or unseen in training. This work presents LITE🍻, a new approach that formulates entity typing as a natural language inference (NLI) problem, making use of (i) the indirect supervision from NLI to infer type information meaningfully represented as textual hypotheses and alleviate the data scarcity issue, as well as (ii) a learning-to-rank objective to avoid the pre-defining of a type set. Experiments show that, with limited training data, LITE obtains state-of-the-art performance on the UFET task. In addition, LITE demonstrates its strong generalizability by not only yielding best results on other fine-grained entity typing benchmarks, more importantly, a pre-trained LITE system works well on new data containing unseen types.1 
    more » « less
  3. Baeza-Yates, Ricardo ; Bonchi, Francesco (Ed.)
    Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, is a basic but important task for knowledge extraction from unstructured text. FET has been studied extensively in natural language processing and typically relies on human-annotated corpora for training, which is costly and difficult to scale. Recent studies explore the utilization of pre-trained language models (PLMs) as a knowledge base to generate rich and context-aware weak supervision for FET. However, a PLM still requires direction and guidance to serve as a knowledge base as they often generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel annotation-free, ontology-guided FET method, ONTOTYPE, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods as well as a typical LLM method, ChatGPT. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing. 
    more » « less
  4. Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert’s runtime is comparable to BERT’s and it scales to large KBs. 
    more » « less
  5. Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a "domain" is characterized not just by genre of text but even by factors as specific as the particular distribution of entities, as neural models tend to overfit by memorizing properties of frequent entities in a dataset. We tackle the problem of building robust entity linking models that generalize effectively and do not rely on labeled entity linking data with a specific entity distribution. Rather than predicting entities directly, our approach models fine-grained entity properties, which can help disambiguate between even closely related entities. We derive a large inventory of types (tens of thousands) from Wikipedia categories, and use hyperlinked mentions in Wikipedia to distantly label data and train an entity typing model. At test time, we classify a mention with this typing model and use soft type predictions to link the mention to the most similar candidate entity. We evaluate our entity linking system on the CoNLL-YAGO dataset and show that our approach outperforms prior domain-independent entity linking systems. We also test our approach in a harder setting derived from the WikilinksNED dataset where all the mention-entity pairs are unseen during test time. Results indicate that our approach generalizes better than a state-of-the-art neural model on the dataset. 
    more » « less