skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guiding Exploratory Behaviors for Multi-Modal Grounding of Linguistic Descriptions
A major goal of grounded language learning research is to enable robots to connect language predicates to a robot’s physical interactive perception of the world. Coupling object exploratory behaviors such as grasping, lifting, and looking with multiple sensory modalities (e.g., audio, haptics, and vision) enables a robot to ground non-visual words like “heavy” as well as visual words like “red”. A major limitation of existing approaches to multi-modal language grounding is that a robot has to exhaustively explore training objects with a variety of actions when learning a new such language predicate. This paper proposes a method for guiding a robot’s behavioral exploration policy when learning a novel predicate based on known grounded predicates and the novel predicate’s linguistic relationship to them. We demonstrate our approach on two datasets in which a robot explored large sets of objects and was tasked with learning to recognize whether novel words applied to those objects.  more » « less
Award ID(s):
1637736
PAR ID:
10060555
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 32nd AAAI Conference on Arti cial Intelligence (AAAI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Learning the meaning of grounded language---language that references a robot’s physical environment and perceptual data---is an important and increasingly widely studied problem in robotics and human-robot interaction. However, with a few exceptions, research in robotics has focused on learning groundings for a single natural language pertaining to rich perceptual data. We present experiments on taking an existing natural language grounding system designed for English and applying it to a novel multilingual corpus of descriptions of objects paired with RGB-D perceptual data. We demonstrate that this specific approach transfers well to different languages, but also present possible design constraints to consider for grounded language learning systems intended for robots that will function in a variety of linguistic settings. 
    more » « less
  2. Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), symmetry in natural language goes beyond visuospatial properties: many words point to abstract concepts with symmetrical content (e.g., equal, marry). For example, if Mark marries Bill, then Bill marries Mark. In both cases (vision and language), symmetry may be formally characterized as invariance under transformation. Is this a coincidence, or is there some deeper psychological resemblance? Here we asked whether representations of symmetry correspond across language and vision. To do so, we developed a novel cross-modal matching paradigm. On each trial, participants observed a visual stimulus (either symmetrical or non-symmetrical) and had to choose between a symmetrical and non-symmetrical English predicate unrelated to the stimulus (e.g., “negotiate” vs. “propose”). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event’s symmetry. A second study showed that this “language-vision correspondence” generalized to objects, and was weakened when the stimuli’s binary nature was made less apparent (i.e., for one object, rather than two inward-facing objects). A final study showed the same effect when nonsigners guessed English translations of signs from American Sign Language, which expresses many symmetrical concepts spatially. Taken together, our findings support the existence of an abstract representation of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface. 
    more » « less
  3. Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), symmetry in natural language goes beyond visuospatial properties: many words point to abstract concepts with symmetrical content (e.g., equal, marry). For example, if Mark marries Bill, then Bill marries Mark. In both cases (vision and language), symmetry may be formally characterized as invariance under transformation. Is this a coincidence, or is there some deeper psychological resemblance? Here we asked whether representations of symmetry correspond across language and vision. To do so, we developed a novel cross-modal matching paradigm. On each trial, participants observed a visual stimulus (either symmetrical or nonsymmetrical) and had to choose between a symmetrical and nonsymmetrical English predicate unrelated to the stimulus (e.g., “negotiate” vs. “propose”). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event’s symmetry. A second study showed that this “language-vision correspondence” generalized to objects and was weakened when the stimuli’s binary nature was made less apparent (i.e., for one object, rather than two inward-facing objects). A final study showed the same effect when nonsigners guessed English translations of signs from American Sign Language, which expresses many symmetrical concepts spatially. Taken together, our findings support the existence of an abstract representation of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface. 
    more » « less
  4. null (Ed.)
    While grounded language learning, or learning the meaning of language with respect to the physical world in which a robot operates, is a major area in human-robot interaction studies, most research occurs in closed worlds or domain-constrained settings. We present a system in which language is grounded in visual percepts without using categorical constraints by combining CNN-based visual featurization with natural language labels. We demonstrate results comparable to those achieved using handcrafted features for specific traits, a step towards moving language grounding into the space of fully open world recognition. 
    more » « less
  5. There has been substantial work in recent years on grounded language acquisition, in which a model is learned that relates linguistic constructs to the perceivable world. While powerful, this approach is frequently hindered by ambiguities and omissions found in natural language. One such omission is the lack of negative descriptions of objects. We describe an unsupervised system that learns visual classifiers associated with words, using semantic similarity to automatically choose negative examples from a corpus of perceptual and linguistic data. We evaluate the effectiveness of each stage as well as the system's performance on the overall learning task. 
    more » « less