skip to main content


Title: Building Language-Agnostic Grounded Language Learning Systems.
Learning the meaning of grounded language---language that references a robot’s physical environment and perceptual data---is an important and increasingly widely studied problem in robotics and human-robot interaction. However, with a few exceptions, research in robotics has focused on learning groundings for a single natural language pertaining to rich perceptual data. We present experiments on taking an existing natural language grounding system designed for English and applying it to a novel multilingual corpus of descriptions of objects paired with RGB-D perceptual data. We demonstrate that this specific approach transfers well to different languages, but also present possible design constraints to consider for grounded language learning systems intended for robots that will function in a variety of linguistic settings.  more » « less
Award ID(s):
1657469
NSF-PAR ID:
10210135
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robot and Human Interactive Communication
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The success of grounded language acquisition using perceptual data (e.g., in robotics) is affected by the complexity of both the perceptual concepts being learned, and the language describing those concepts. We present methods for analyzing this complexity, using both visual features and entropy-based evaluation of sentences. Our work illuminates core, quantifiable statistical differences in how language is used to describe different traits of objects, and the visual representation of those objects. The methods we use provide an additional analytical tool for research in perceptual language learning. 
    more » « less
  2. Natural language understanding for robotics can require substantial domain- and platform-specific engineering. For example, for mobile robots to pick-and-place objects in an environment to satisfy human commands, we can specify the language humans use to issue such commands, and connect concept words like red can to physical object properties. One way to alleviate this engineering for a new domain is to enable robots in human environments to adapt dynamically -- continually learning new language constructions and perceptual concepts. In this work, we present an end-to-end pipeline for translating natural language commands to discrete robot actions, and use clarification dialogs to jointly improve language parsing and concept grounding. We train and evaluate this agent in a virtual setting on Amazon Mechanical Turk, and we transfer the learned agent to a physical robot platform to demonstrate it in the real world. 
    more » « less
  3. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  4. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  5. There has been substantial work in recent years on grounded language acquisition, in which a model is learned that relates linguistic constructs to the perceivable world. While powerful, this approach is frequently hindered by ambiguities and omissions found in natural language. One such omission is the lack of negative descriptions of objects. We describe an unsupervised system that learns visual classifiers associated with words, using semantic similarity to automatically choose negative examples from a corpus of perceptual and linguistic data. We evaluate the effectiveness of each stage as well as the system's performance on the overall learning task. 
    more » « less