The increasing capacity from inverter-based resources (IBR) creates challenges for designing and operating electric power systems. In particular, wind and solar generation has very different characteristics compared to conventional turbo generators. This research investigates the critical clearing times for IBR as larger amounts of wind generation brought online. This paper develops a new six-bus transmission test systems for which multiple wind stations are interconnected. An exhaustive study of fault locations with respect to load levels and line impedances for a wide range of IBR penetration levels was performed with respect to inverter stability analysis to determine the corresponding critical clearing times. The results show that voltage stability at IBR points of interconnection can occur at not only higher penetration levels, but at lower penetrations as well.
more »
« less
Short-Term Transmission Line Maintenance Scheduling with Wind Energy Integration,
Transmission line maintenance scheduling (TLMS) plays an important role in enhancement of component reliability. When conducting short-term TLMS, system operators should consider not only operating costs but also operating constraints, particularly with increasing integration of large-scale wind generation. This paper proposes a stochastic security-constrained model to establish short-term TLMS in consideration of wind generation. Possible scenarios, generated by the Latin hypercube sampling (LHS) technique, are simulated to represent wind power volatility. For each line to be maintained during the maintenance windows, Kirchoff’s law is enforced by using a big-M formulation. Unit commitment is also considered to coordinate TLMS to achieve the best maintenance strategies. The whole problem is modeled as a mixed integer linear programming problem, which is solved by the CPLEX solver. Numerical tests on a six-bus system and a modified IEEE 118-bus system show the effectiveness of the proposed model and the algorithm.
more »
« less
- Award ID(s):
- 1745451
- PAR ID:
- 10060671
- Date Published:
- Journal Name:
- IEEE PES General Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article presents a novel methodology for analyzing the resilience of an active distribution system (ADS) integrated with an urban gas network (UGN). It demonstrates that the secure adoption of gas turbines with optimal capacity and allocation can enhance the resilience of the ADS during high-impact, low-probability (HILP) events. A two-level tri-layer resilience problem is formulated to minimize load shedding as the resilience index during post-event outages. The challenge of unpredictability is addressed by an adaptive distributionally robust optimization strategy based on multi-cut Benders decomposition. The uncertainties of HILP events are modeled by different moment-based probability distributions. In this regard, considering the nature of each uncertain variable, a different probabilistic method is utilized. For instance, to account for the influence of power generated from renewable energy sources on the decision-making process, a diurnal version of the long-term short-term memory network is developed to forecast day-ahead weather. In comparison with standard LSTM, the proposed approach reduces the mean absolute error and root mean squared error by approximately 47% and 71% for wind speed, as well as 76% and 77% for solar irradiance network. Finally, the optimal operating framework for improving power grid resilience is validated using the IEEE 33-bus ADS and 7-node UGN.more » « less
-
null (Ed.)Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated.more » « less
-
Efficient Simulation of Cascading Outages Using an Energy Function-Embedded Quasi-Steady-State ModelThis paper proposed an energy function-embedded quasi-steady-state model for efficient simulation of cascading outages on a power grid while addressing transient stability concerns. Compared to quasi-steady-state models, the proposed model incorporates short-term dynamic simulation and an energy function method to efficiently evaluate the transient stability of a power grid together with outage propagation without transient stability simulation. Cascading outage simulation using the proposed model conducts three steps for each disturbance such as a line outage. First, it performs time-domain simulation for a short term to obtain a post-disturbance trajectory. Second, along the trajectory, the system state with the local maximum potential energy is found and used as the initial point to search for a relevant unstable equilibrium by Newton's method. Third, the transient energy margin is estimated based on this unstable equilibrium to predict an out-of-step condition with generators. The proposed energy function-embedded quasi-steady-state model is tested in terms of its accuracy and time performance on an NPCC 140-bus power system and compared to a quasi-steady-state model embedding transient stability simulation.more » « less
-
null (Ed.)This paper presents a multi-objective (MO) optimization for economic/emission dispatch (EED) problem incorporating hydrothermal plants, wind power generation, energy storage systems (ESSs) and responsive loads. The uncertain behavior of wind turbines and electric loads is modeled by scenarios. Stochastic programming is proposed to achieve the expected cost and emission production. Moreover, the carbon capture systems are considered to lower the level of carbon emission produced by conventional thermal units. The proposed optimization problem is tested on the IEEE 24-bus case study using DC power flow calculation. The optimal Pareto frontier is obtained, and a fuzzy decision-making tool determined the best solution among obtained Pareto points. The problem is modeled as mixed-integer non-linear programming in the General Algebraic Modelling System (GAMS) and solved using DICOPT solver.more » « less
An official website of the United States government

