skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Economic-Emission Dispatch Problem in Power Systems with Carbon Capture Power Plants
Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated.  more » « less
Award ID(s):
1757207
PAR ID:
10230400
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Industry Applications
ISSN:
0093-9994
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The energy demands from data centers contribute greatly to water scarcity footprint and carbon emissions. Understanding the use of on-site renewable power generation is an important step to gain insight into making data centers more sustainable. This novel study examines the impact of on-site solar or wind energy on data center water scarcity usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale for a given data center size, water consumption level, and energy efficiency. The analysis uncovers combinations of specific metrics associated with grid-based carbon emissions and water scarcity footprint that enable predictions of the improvements anticipated when implementing on-site solar or wind energy. The implementation of on-site renewables has the most benefit in reducing carbon footprint in areas with high existing grid-based emissions such as the western side of the Appalachian Mountains (e.g., central and eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally seen in counties with low water scarcity compared to adjacent areas (e.g., northern California). 
    more » « less
  2. Abstract Combusting fossil fuels to produce electricity is the single largest contributor to sector-level, anthropogenic carbon pollution. Because sector-wide policies are often too unwieldy to implement, however, some researchers have recommended reducing electricity-based CO2emissions by targeting the most extreme emitters of each nation’s electricity industry. Here, we use a unique international data source to measure national disproportionalities in power plant CO2emissions and estimate the fraction of each country’s electricity-based CO2emissions that would be reduced if its most profligate polluters lowered their emission intensities, switched to gas fuels, and incorporated carbon capture and storage systems. We find that countries’ disproportionalities vary greatly and have mostly grown over time. We also find that 17%–49% of the world’s CO2emissions from electricity generation could be eliminated depending on the intensity standards, fuels, or carbon capture technologies adopted by hyper-emitting plants. This suggests that policies aimed at improving the environmental performance of ‘super polluters’ are effective strategies for transitioning to decarbonized energy systems. 
    more » « less
  3. Abstract Annual carbon dioxide (CO2) emissions from the U.S. power sector decreased 24% from 2000 to 2018, while carbon intensity (CO2per unit of electricity generated) declined by 34%. These reductions have been attributed in part to a shift from coal to natural gas, as gas‐fired plants emit roughly half the CO2emissions as coal plants. To date, no analysis has looked at the coal‐to‐gas shift from the perspective of commitment accounting—the cumulative future CO2emissions expected from power infrastructure. We estimate that between 2000 and 2018, committed emissions in the U.S. power sector decreased 12% (six GtCO2), from 49 to 43 GtCO2, assuming average generator lifetimes and capacity factors. Taking into consideration methane leakage during the life cycle of coal and gas plants, this decrease in committed emissions is further offset (e.g., assuming a 3% leakage rate, there is effectively no reduction at all). Thus, although annual emissions have fallen, cumulative future emissions will not be substantially lower unless existing coal and gas plants operate at significantly lower rates than they have historically. Moreover, our estimates of committed emissions for U.S. coal and gas plants finds steep reductions in plant use and/or early retirements are already needed for the country to meet its targets under the Paris climate agreement—even if no new fossil capacity is added. 
    more » « less
  4. Integrating renewable energy into the manufacturing facility is the ultimate key to realising carbon-neutral operations. Although many firms have taken various initiatives to reduce the carbon footprint of their facilities, there are few quantitative studies focused on cost analysis and supply reliability of integrating intermittent wind and solar power. This paper aims to fill this gap by addressing the following question: shall we adopt power purchase agreement (PPA) or onsite renewable generation to realise the eco-economic benefits? We tackle this complex decision-making problem by considering two regulatory options: government carbon incentives and utility pricing policy. A stochastic programming model is formulated to search for the optimal mix of onsite and offsite renewable power supply. The model is tested extensively in different regions under various climatic conditions. Three findings are obtained. First, in a long term onsite generation and PPA can avoid the price volatility in the spot or wholesale electricity market. Second, at locations where the wind speed is below 6 m/s, PPA at $70/MWh is preferred over onsite wind generation. Third, compared to PPA and wind generation, solar generation is not economically competitive unless the capacity cost is down below USD1.5 M per MW. 
    more » « less
  5. null (Ed.)
    Abstract If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hours (83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation. 
    more » « less