skip to main content

Title: Economic-Emission Dispatch Problem in Power Systems with Carbon Capture Power Plants
Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated.
Authors:
; ; ; ;
Award ID(s):
1757207
Publication Date:
NSF-PAR ID:
10230400
Journal Name:
IEEE Transactions on Industry Applications
Page Range or eLocation-ID:
1 to 1
ISSN:
0093-9994
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hoursmore »(83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation.« less
  2. Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance onmore »their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions.« less
  3. Integrating renewable energy into the manufacturing facility is the ultimate key to realising carbon-neutral operations. Although many firms have taken various initiatives to reduce the carbon footprint of their facilities, there are few quantitative studies focused on cost analysis and supply reliability of integrating intermittent wind and solar power. This paper aims to fill this gap by addressing the following question: shall we adopt power purchase agreement (PPA) or onsite renewable generation to realise the eco-economic benefits? We tackle this complex decision-making problem by considering two regulatory options: government carbon incentives and utility pricing policy. A stochastic programming model ismore »formulated to search for the optimal mix of onsite and offsite renewable power supply. The model is tested extensively in different regions under various climatic conditions. Three findings are obtained. First, in a long term onsite generation and PPA can avoid the price volatility in the spot or wholesale electricity market. Second, at locations where the wind speed is below 6 m/s, PPA at $70/MWh is preferred over onsite wind generation. Third, compared to PPA and wind generation, solar generation is not economically competitive unless the capacity cost is down below USD1.5 M per MW.« less
  4. With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs inmore »the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.« less
  5. Ardakanian, Omid ; Niesse, Astrid (Ed.)
    The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-localmore »optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity.« less