skip to main content

Title: Integrating interactive computer simulations into K-12 earth and environmental science
This paper discusses our work in progress aiming to explore how computer simulations can be integrated into the K-12 curriculum of Earth and Environmental science. Several interactive simulations using Netlogo, a multi-agent modeling environment, and Scratch, a visual programming software are being developed with steerable parameters and the corresponding output plots for students to manipulate and interpret the results, respectively. Here, we present two simulations we designed on water cycle and discuss how these may help students learn about the distribution of water and its continuous move in the ecosystem.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1742125
Publication Date:
NSF-PAR ID:
10060711
Journal Name:
Proceedings of IEEE Integrated STEM education Conference (ISEC) 2018
Page Range or eLocation-ID:
220 to 223
Sponsoring Org:
National Science Foundation
More Like this
  1. We articulate a framework for using computational modeling to coherently integrate the design of science and engineering curricular experiences. We describe how this framework informs the design of the Water Runoff Challenge (WRC), a multi-week curriculum unit and modeling environment that integrates Earth science, engineering, and computational modeling for upper elementary and lower middle school students. In the WRC, students develop conceptual and computational models of surface water runoff, then use simulations incorporating their models to develop, test, and optimize solutions to the runoff problem. We conducted a classroom pilot study where we collected students’ learning artifacts and data logged from their use of the computational environment. We illustrate opportunities students had to integrate science, engineering, and computational thinking during the unit in a pair of contrasting vignettes.
  2. Asynchronous online courses are popular because they offer benefits to both students and instructors. Students benefit from the convenience, flexibility, affordability, freedom of geography, and access to information. Instructors and institutions benefit by having a broad geographical reach, scalability, and cost-savings of no physical classroom. A challenge with asynchronous online courses is providing students with engaging, collaborative and interactive experiences. Here, we describe how an online poster symposium can be used as a unique educational experience and assessment tool in a large-enrollment (e.g., 500 students), asynchronous, natural science, general education (GE) course. The course, Introduction to Environmental Science (ENR2100), was delivered using distance education (DE) technology over a 15-week semester. In ENR2100 students learn a variety of topics including freshwater resources, surface water, aquifers, groundwater hydrology, ecohydrology, coastal and ocean circulation, drinking water, water purification, wastewater treatment, irrigation, urban and agricultural runoff, sediment and contaminant transport, water cycle, water policy, water pollution, and water quality. Here we present a is a long-term study that takes place from 2017 to 2022 (before and after COVID-19) and involved 5,625 students over 8 semesters. Scaffolding was used to break up the poster project into smaller, more manageable assignments, which students completed throughout themore »semester. Instructions, examples, how-to videos, book chapters and rubrics were used to accommodate Students’ different levels of knowledge. Poster assignments were designed to teach students how to find and critically evaluate sources of information, recognize the changing nature of scientific knowledge, methods, models and tools, understand the application of scientific data and technological developments, and evaluate the social and ethical implications of natural science discoveries. At the end of the semester students participated in an asynchronous online poster symposium. Each student delivered a 5-min poster presentation using an online learning management system and completed peer reviews of their classmates’ posters using a rubric. This poster project met the learning objectives of our natural science, general education course and taught students important written, visual and verbal communication skills. Students were surveyed to determine, which parts of the course were most effective for instruction and learning. Students ranked poster assignments first, followed closely by lectures videos. Approximately 87% of students were confident that they could produce a scientific poster in the future and 80% of students recommended virtual poster symposiums for online courses.« less
  3. Recent science education reforms, as described in the Framework for K-12 Science Education (NRC, 2012), call for three-dimensional learning that engages students in scientific practices and the use of scientific lenses to learn science content. However, relatively little research at any grade level has focused on how students develop this kind of three-dimensional knowledge that includes crosscutting concepts. This paper aims to contribute to a growing knowledge base that describes how to engage students in three-dimensional learning by exploring to what extent elementary students represent the crosscutting concept systems and system models when engaged in the practice developing and using models as part of an NGSS-aligned curriculum unit. This paper answers the questions: How do students represent elements of crosscutting concepts in conceptual models of water systems? How do students’ representations of crosscutting concepts change related to different task-based scaffolds? To analyze students’ models, we developed and applied a descriptive coding scheme to describe how the students illustrated the flow of water. The results show important differences in how students represented system elements across models. Findings provide insight for the kinds of support that students might need in order to move towards the development of three-dimensional understandings of science content.
  4. Despite increased calls for the need for more diverse engineers and significant efforts to “move the needle,” the composition of students, especially women, earning bachelor’s degrees in engineering has not significantly changed over the past three decades. Prior research by Klotz and colleagues (2014) showed that sustainability as a topic in engineering education is a potentially positive way to increase women’s interest in STEM at the transition from high school to college. Additionally, sustainability has increasingly become a more prevalent topic in engineering as the need for global solutions that address the environmental, social, and economic aspects of sustainability have become more pressing. However, few studies have examined students’ sustainability related career for upper-level engineering students. This time point is a critical one as students are transitioning from college to industry or other careers where they may be positioned to solve some of these pressing problems. In this work, we answer the question, “What differences exist between men and women’s attitudes about sustainability in upper-level engineering courses?” in order to better understand how sustainability topics may promote women’s interest in and desire to address these needs in their future careers. We used pilot data from the CLIMATE survey given tomore »228 junior and senior civil, environmental, and mechanical engineering students at a large East Coast research institution. This survey included questions about students’ career goals, college experiences, beliefs about engineering, and demographic information. The students surveyed included 62 third-year students, 96 fourth-year students, 29 fifth-year students, and one sixth-year student. In order to compare our results of upper-level students’ attitudes about sustainability, we asked the same questions as the previous study focused on first-year engineering students, “Which of these topics, if any, do you hope to directly address in your career?” The list of topics included energy (supply or demand), climate change, environmental degradation, water supply, terrorism and war, opportunities for future generations, food availability, disease, poverty and distribution of resources, and opportunities for women and/or minorities. As the answer to this question was binary, either “Yes,” or “No,” Pearson’s Chi-squared test with Yates’ continuity correction was performed on each topic for this question, comparing men and women’s answers. We found that women are significantly more likely to want to address water supply, food availability, and opportunities for woman and/or minorities in their careers than their male peers. Conversely, men were significantly more likely to want to address energy and terrorism and war in their careers than their female peers. Our results begin to help us understand the particular differences that men and women, even far along in their undergraduate engineering careers, may have in their desire to address certain sustainability outcomes in their careers. This work begins to let us understand certain topics and pathways that may support women in engineering as well as provides comparisons to prior work on early career undergraduate students. Our future work will include looking at particular student experiences in and out of the classroom to understand how these sustainability outcome expectations develop.« less
  5. Despite its importance in electron transfer reactions and radiation chemistry, there has been disagreement over the fundamental nature of the hydrated electron, such as whether or not it resides in a cavity. Mixed quantum/classical simulations of the hydrated electron give different structures depending on the pseudopotential employed, and ab initio models of computational necessity use small numbers of water molecules and/or provide insufficient statistics to compare to experimental observables. A few years ago, Kumar et al. (J. Phys. Chem. A 2015, 119, 9148) proposed a minimalist ab initio model of the hydrated electron with only a small number of explicitly treated water molecules plus a polarizable continuum model (PCM). They found that the optimized geometry had four waters arranged tetrahedrally around a central cavity, and that the calculated vertical detachment energy and radius of gyration agreed well with experiment, results that were largely independent of the level of theory employed. The model, however, is based on a fixed structure at 0 K and does not explicitly incorporate entropic contributions or the thermal fluctuations that should be associated with the room-temperature hydrated electron. Thus, in this paper, we extend the model of Kumar et al. by running Born−Oppenheimer molecular dynamics (BOMD)more »of a small number of water molecules with an excess electron plus PCM at room temperature. We find that when thermal fluctuations are introduced, the level of theory chosen becomes critical enough when only four waters are used that one of the waters dissociates from the cluster with certain density functionals. Moreover, even with an optimally tuned range-separated hybrid functional, at room temperature the tetrahedral orientation of the 0 K first-shell waters is entirely lost and the central cavity collapses, a process driven by the fact that the explicit water molecules prefer to make H-bonds with each other more than with the excess electron. The resulting average structure is quite similar to that produced by a noncavity mixed quantum/classical model, so that the minimalist 4-water BOMD models suffer from problems similar to those of noncavity models, such as predicting the wrong sign of the hydrated electron’s molar solvation volume. We also performed BOMD with 16 explicit water molecules plus an extra electron and PCM. We find that the inclusion of an entire second solvation shell of explicit water leads to little change in the outcome from when only four waters were used. In fact, the 16-water simulations behave much like those of water cluster anions, in which the electron localizes at the cluster surface, showing that PCM is not acceptable for use in minimalist models to describe the behavior of the bulk hydrated electron. For both the 4- and 16-water models, we investigate how the introduction of thermal motions alters the predicted absorption spectrum, vertical detachment energy, and resonance Raman spectrum of the simulated hydrated electron. We also present a set of structural criteria that can be used to numerically determine how cavity-like (or not) a particular hydrated electron model is. All of the results emphasize that the hydrated electron is a statistical object whose properties are inadequately captured using only a small number of explicit waters, and that a proper treatment of thermal fluctuations is critical to understanding the hydrated electron’s chemical and physical behavior.« less