skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A minimaj-preserving crystal on ordered multiset partitions
We provide a crystal structure on the set of ordered multiset partitions, which recently arose in the pursuit of the Delta Conjecture. This conjecture was stated by Haglund, Remmel and Wilson as a generalization of the Shuffle Conjecture. Various statistics on ordered multiset partitions arise in the combinatorial analysis of the Delta Conjecture, one of them being the minimaj statistic, which is a variant of the major index statistic on words. Our crystal has the property that the minimaj statistic is constant on connected components of the crystal. In particular, this yields another proof of the Schur positivity of the graded Frobenius series of the generalization $$R_{n,k}$$ due to Haglund, Rhoades and Shimozono of the coinvariant algebra $$R_n$$. The crystal structure also enables us to demonstrate the equidistributivity of the minimaj statistic with the major index statistic on ordered multiset partitions.  more » « less
Award ID(s):
1700058
PAR ID:
10060713
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in applied mathematics
Volume:
95
ISSN:
0196-8858
Page Range / eLocation ID:
95-115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $$\Delta _{h_l}\Delta ' _{e_k} e_{n}$$ , where $$\Delta ' _{e_k}$$ and $$\Delta _{h_l}$$ are Macdonald eigenoperators and $$e_n$$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $$\operatorname {\mathrm {GL}}_m$$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions. 
    more » « less
  2. We conjecture a simple combinatorial formula for the Schur expansion of the Frobenius series of the Sn-modules Rn,λ,s, which appear as the cohomology rings of the “∆-Springer” varieties. These modules interpolate between the Garsia-Procesi modules Rµ (which are the type A Springer fiber cohomology rings) and the rings Rn,k defined by Haglund, Rhoades, and Shimozono in the context of the Delta Conjecture. Our formula directly generalizes the known cocharge formula for Garsia-Procesi modules and gives a new cocharge formula for the Delta Conjecture at t = 0, by introducing battery-powered tableaux that “store” extra charge in their battery. Our conjecture has been verified by computer for all n ≤ 10 and s ≤ ℓ(λ)+2, as well as for n ≤ 8 and s ≤ ℓ(λ)+7. We prove it holds for several infinite families of n,λ,s. 
    more » « less
  3. We prove that $$\omega \Delta ^{\prime}_{e_{k}}e_{n}|_{t=0}$$, the symmetric function in the Delta Conjecture at $t=0$, is a skewing operator applied to a Hall-Littlewood polynomial, and generalize this formula to the Frobenius series of all $$\Delta $$-Springer modules. We use this to give an explicit Schur expansion in terms of the Lascoux-Schützenberger cocharge statistic on a new combinatorial object that we call a battery-powered tableau. Our proof is geometric, and shows that the $$\Delta $$-Springer varieties of Levinson, Woo, and the second author are generalized Springer fibers coming from the partial resolutions of the nilpotent cone due to Borho and MacPherson. We also give alternative combinatorial proofs of our Schur expansion for several special cases, and give conjectural skewing formulas for the $$t$$ and $$t^{2}$$ coefficients of $$\omega \Delta ^{\prime}_{e_{k}}e_{n}$$. 
    more » « less
  4. null (Ed.)
    A quickest change detection problem is considered in a sensor network with observations whose statistical dependency structure across the sensors before and after the change is described by a decomposable graphical model (DGM). Distributed computation methods for this problem are proposed that are capable of producing the optimum centralized test statistic. The DGM leads to the proper way to collect nodes into local groups equivalent to cliques in the graph, such that a clique statistic which summarizes all the clique sensor data can be computed within each clique. The clique statistics are transmitted to a decision maker to produce the optimum centralized test statistic. In order to further improve communication efficiency, an ordered transmission approach is proposed where transmissions of the clique statistics to the fusion center are ordered and then adaptively halted when sufficient information is accumulated. This procedure is always guaranteed to provide the optimal change detection performance, despite not transmitting all the statistics from all the cliques. A lower bound on the average number of transmissions saved by ordered transmissions is provided and for the case where the change seldom occurs the lower bound approaches approximately half the number of cliques provided a well behaved distance measure between the distributions of the sensor observations before and after the change is sufficiently large. We also extend the approach to the case when the graph structure is different under each hypothesis. Numerical results show significant savings using the ordered transmission approach and validate the theoretical findings. 
    more » « less
  5. Abstract The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture (1962) that the absolute values of the coefficients of the Alexander polynomial $$\Delta _{L}(t)$$ of an alternating link $$L$$ are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó (2003) for the case of genus $$2$$ alternating knots, among others. We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we obtain that the absolute values of the coefficients of $$\Delta _{L}(t)$$, where $$L$$ is a special alternating link, form a log-concave sequence with no internal zeros. In particular, they are unimodal. 
    more » « less