skip to main content


Title: Scenario Context v/s Framing and Defaults in Managing Privacy in Household IoT
The Internet of Things provides household device users with an ability to connect and manage numerous devices over a common platform. However, the sheer number of possible privacy settings creates issues such as choice overload. This article outlines a data-driven approach to understand how users make privacy decisions in household IoT scenarios. We demonstrate that users are not just influenced by the specifics of the IoT scenario, but also by aspects immaterial to the decision, such as the default setting and its framing.  more » « less
Award ID(s):
1640664 1640527
NSF-PAR ID:
10061087
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Abstract: Users trust IoT apps to control and automate their smart devices. These apps necessarily have access to sensitive data to implement their functionality. However, users lack visibility into how their sensitive data is used, and often blindly trust the app developers. In this paper, we present IoTWATcH, a dynamic analysis tool that uncovers the privacy risks of IoT apps in real-time. We have designed and built IoTWATcH through a comprehensive IoT privacy survey addressing the privacy needs of users. IoTWATCH operates in four phases: (a) it provides users with an interface to specify their privacy preferences at app install time, (b) it adds extra logic to an app’s source code to collect both IoT data and their recipients at runtime, (c) it uses Natural Language Processing (NLP) techniques to construct a model that classifies IoT app data into intuitive privacy labels, and (d) it informs the users when their preferences do not match the privacy labels, exposing sensitive data leaks to users. We implemented and evaluated IoTWATcH on real IoT applications. Specifically, we analyzed 540 IoT apps to train the NLP model and evaluate its effectiveness. IoTWATcH yields an average 94.25% accuracy in classifying IoT app data into privacy labels with only 105 ms additional latency to an app’s execution. 
    more » « less
  2. null (Ed.)
    The proliferation of the Internet of Things (IoT) has started transforming our lifestyle through automation of home appliances. However, there are users who are hesitant to adopt IoT devices due to various privacy and security concerns. In this paper, we elicit peoples’ attitude and concerns towards adopting IoT devices. We conduct an online survey and collect responses from 232 participants from three different geographic regions (United States, Europe, and India); the participants consist of both adopters and non-adopters of IoT devices. Through data analysis, we determine that there are both similarities and differences in perceptions and concerns between adopters and non-adopters. For example, even though IoT and non-IoT users share similar security and privacy concerns, IoT users are more comfortable using IoT devices in private settings compared to non-IoT users. Furthermore, when comparing users’ attitude and concerns across different geographic regions, we found similarities between participants from the US and Europe, yet participants from India showcased contrasting behavior. For instance, we found that participants from India were more trusting in their government to properly protect consumer data and were more comfortable using IoT devices in a variety of public settings, compared to participants from the US and Europe. Based on our findings, we provide recommendations to reduce users’ concerns in adopting IoT devices, and thereby enhance user trust towards adopting IoT devices. 
    more » « less
  3. One of the biggest privacy concerns of smart home users is enforcing limits on household members' access to devices and each other's data. While people commonly express preferences for intricate access control policies, in practice they often settle for less secure defaults. As an alternative, this paper investigates "optimistic access control" policies that allow users to obtain access and data without pre-approval, subject to oversight from other household members. This solution allows users to leverage the interpersonal trust they already rely on in order to establish privacy boundaries commensurate with more complex access control methods, while retaining the convenience of less secure strategies. To evaluate this concept, we conducted a series of surveys with 604 people total, studying the acceptability and perceptions of this approach. We found that a number of respondents preferred optimistic modes to existing access control methods and that interest in optimistic access varied with device type and household characteristics. 
    more » « less
  4. Privacy policies contain important information regarding the collection and use of user’s data. As Internet of Things (IoT) devices have become popular during the last years, these policies have become important to protect IoT users from unwanted use of private data collected through them. However, IoT policies tend to be long thus discouraging users to read them. In this paper, we seek to create an automated and annotated corpus for IoT privacy policies through the use of natural language processing techniques. Our method extracts the purpose from privacy policies and allows users to quickly find the important information relevant to their data collection/use. 
    more » « less
  5. In this paper, we propose a secure lightweight and thing-centered IoT communication system based on MQTT, SecT, in which a device/thing authenticates users. Compared with a server-centered IoT system in which a cloud server authenticates users, a thing-centered system preserves user privacy since the cloud server is primarily a relay between things and users and does not store or see user data in plaintext. The contributions of this work are three-fold. First, we explicitly identify critical functionalities in bootstrapping a thing and design secure pairing and binding strategies. Second, we design a strategy of end-to-end encrypted communication between users and things for the sake of user privacy and even the server cannot see the communication content in plaintext. Third, we design a strong authentication system that can defeat known device scanning attack, brute force attack and device spoofing attack against IoT. We implemented a prototype of SecT on a $10 Raspberry Pi Zero W and performed extensive experiments to validate its performance. The experiment results show that SecT is both cost-effective and practical. Although we design SecT for the smart home application, it can be easily extended to other IoT application domains. 
    more » « less