skip to main content


Title: Quantifying location privacy in permissioned blockchain-based internet of things (IoT)
Recently, blockchain has received much attention from the mobility-centric Internet of Things (IoT). It is deemed the key to ensuring the built-in integrity of information and security of immutability by design in the peer-to-peer network (P2P) of mobile devices. In a permissioned blockchain, the authority of the system has control over the identities of its users. Such information can allow an ill-intentioned authority to map identities with their spatiotemporal data, which undermines the location privacy of a mobile user. In this paper, we study the location privacy preservation problem in the context of permissioned blockchain-based IoT systems under three conditions. First, the authority of the blockchain holds the public and private key distribution task in the system. Second, there exists a spatiotemporal correlation between consecutive location-based transactions. Third, users communicate with each other through short-range communication technologies such that it constitutes a proof of location (PoL) on their actual locations. We show that, in a permissioned blockchain with an authority and a presence of a PoL, existing approaches cannot be applied using a plug-and-play approach to protect location privacy. In this context, we propose BlockPriv, an obfuscation technique that quantifies, both theoretically and experimentally, the relationship between privacy and utility in order to dynamically protect the privacy of sensitive locations in the permissioned blockchain.  more » « less
Award ID(s):
1851890
NSF-PAR ID:
10390162
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Vincent Poor and Zhu Han
Date Published:
Journal Name:
MobiQuitous '19: Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
Page Range / eLocation ID:
116 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, the ubiquity of mobile devices leads to an increasing demand of public network services, e.g., WiFi hot spots. As a part of this trend, modern transportation systems are equipped with public WiFi devices to provide Internet access for passengers as people spend a large amount of time on public transportation in their daily life. However, one of the key issues in public WiFi spots is the privacy concern due to its open access nature. Existing works either studied location privacy risk in human traces or privacy leakage in private networks such as cellular networks based on the data from cellular carriers. To the best of our knowledge, none of these work has been focused on bus WiFi privacy based on large-scale real-world data. In this paper, to explore the privacy risk in bus WiFi systems, we focus on two key questions how likely bus WiFi users can be uniquely re-identified if partial usage information is leaked and how we can protect users from the leaked information. To understand the above questions, we conduct a case study in a large-scale bus WiFi system, which contains 20 million connection records and 78 million location records from 770 thousand bus WiFi users during a two-month period. Technically, we design two models for our uniqueness analyses and protection, i.e., a PB-FIND model to identify the probability a user can be uniquely re-identified from leaked information; a PB-HIDE model to protect users from potentially leaked information. Specifically, we systematically measure the user uniqueness on users' finger traces (i.e., connection URL and domain), foot traces (i.e., locations), and hybrid traces (i.e., both finger and foot traces). Our measurement results reveal (i) 97.8% users can be uniquely re-identified by 4 random domain records of their finger traces and 96.2% users can be uniquely re-identified by 5 random locations on buses; (ii) 98.1% users can be uniquely re-identified by only 2 random records if both their connection records and locations are leaked to attackers. Moreover, the evaluation results show our PB-HIDE algorithm protects more than 95% users from the potentially leaked information by inserting only 1.5% synthetic records in the original dataset to preserve their data utility. 
    more » « less
  2. null (Ed.)
    The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing a way for bystanders to protect their own privacy rather than relying on external systems for protection. While past works in the literature focused on privacy perceptions of bystanders when photographed in public/shared spaces, there has not been research with a focus on user perceptions of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy. In our study, we found that 16 participants would use FacePET or similar devices to enhance their facial privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities, it would allow them to become more popular. 
    more » « less
  3. The adoption of blockchain in the Internet of Things (IoT) has been increasing due to the various benefits that blockchain brings, such as security and privacy. Current blockchain models for mobile IoT assume there are fixed, powerful edge devices capable of providing global communication to all the nodes in the network. However, due to the mobile nature of IoT or network partitioning problems (NPP), nodes can move out of a cell area and split into smaller independent peer-to-peer subnetworks. Existing blockchain structures either do not support the network partitioning problem or have limitations. This paper introduces a multidimensional, graph-based blockchain structure, that utilizes k-dimensional spatiotemporal space, to address the challenges of applying blockchain in mobile networks with limited resources. Experimental results show that a multidimensional blockchain structure can improve scalability and efficiency as the blockchain grows in size, similar to logarithmic growth, and reduce the longest chain length by more than 99.99% compared to the traditional chain-based blockchain structure. 
    more » « less
  4. The adoption of blockchain in the Internet of Things (IoT) has been increasing due to the various benefits that blockchain brings, such as security and privacy. Current blockchain models for mobile IoT assume there are fixed, powerful edge devices capable of providing global communication to all the nodes in the network. However, due to the mobile nature of IoT or network partitioning problems (NPP), nodes can move out of a cell area and split into smaller independent peer-to-peer subnetworks. Existing blockchain structures either do not support the network partitioning problem or have limitations. This paper introduces a multidimensional, graph-based blockchain structure, that utilizes k-dimensional spatiotemporal space, to address the challenges of applying blockchain in mobile networks with limited resources. Experimental results show that a multidimensional blockchain structure can improve scalability and efficiency as the blockchain grows in size, similar to logarithmic growth, and reduce the longest chain length by more than 99.99% compared to the traditional chain-based blockchain structure. 
    more » « less
  5. The adoption of blockchain in the Internet of Things (IoT) has been increasing due to the various benefits that blockchain brings, such as security and privacy. Current blockchain models for mobile IoT assume there are fixed, powerful edge devices capable of providing global communication to all the nodes in the network. However, due to the mobile nature of IoT or network partitioning problems (NPP), nodes can move out of a cell area and split into smaller independent peer-to-peer subnetworks. Existing blockchain structures either do not support the network partitioning problem or have limitations. This paper introduces a multidimensional, graph-based blockchain structure, that utilizes k-dimensional spatiotemporal space, to address the challenges of applying blockchain in mobile networks with limited resources. Experimental results show that a multidimensional blockchain structure can improve scalability and efficiency as the blockchain grows in size, similar to logarithmic growth, and reduce the longest chain length by more than 99.99% compared to the traditional chain-based blockchain structure. 
    more » « less