Abstract Many of the studies on the entropy‐stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O have been heavily application‐based. Previous works have studied effects of cation stoichiometry on the entropy‐driven reaction to form a single phase, but a fundamental exploration of the effects of anion stoichiometry and/or redox chemistry on electrical properties is lacking. Using near‐edge X‐ray absorption fine structure (NEXAFS) and electrical measurements, we show that oxidizing thin film samples of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O affects primarily the valence of Co, leaving the other cations in this high‐entropy system unchanged. This oxidation increases electrical conduction in these thin films, which occurs via small polaron hopping mediated by the Co valence shift from 2+ to a mixed 2+/3+ state. In parallel, we show that bulk samples sintered in an oxygen‐rich atmosphere have a lower activation energy for electrical conduction than those equilibrated in a nitrogen (reducing) atmosphere. Combining feasible defect compensation scenarios with electrical impedance measurements and NEXAFS data, we propose a self‐consistent interpretation of Co redox‐mediated small polaron conduction as the dominant method of charge transfer in this system. 
                        more » 
                        « less   
                    
                            
                            The proof is in the powder: revealing structural peculiarities in the Yb 3 Rh 4 Sn 13 structure type
                        
                    - Award ID(s):
- 1358975
- PAR ID:
- 10061293
- Date Published:
- Journal Name:
- CrystEngComm
- Volume:
- 19
- Issue:
- 25
- ISSN:
- 1466-8033
- Page Range / eLocation ID:
- 3381 to 3391
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta 2 NiSe 5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material’s electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta 2 NiSe 5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.more » « less
- 
            null (Ed.)A crucial issue in cuprates is the extent and mechanism of the coupling of the lattice to the electrons and the superconductivity. Here we report Cu K edge extended X-ray absorption fine structure measurements elucidating the internal quantum tunneling polaron (iqtp) component of the dynamical structure in two heavily overdoped superconducting cuprate compounds, tetragonal YSr 2 Cu 2.75 Mo 0.25 O 7.54 with superconducting critical temperature, T c = 84 K and hole density p = 0.3 to 0.5 per planar Cu, and the tetragonal phase of Sr 2 CuO 3.3 with T c = 95 K and p = 0.6. In YSr 2 Cu 2.75 Mo 0.25 O 7.54 changes in the Cu-apical O two-site distribution reflect a sequential renormalization of the double-well potential of this site beginning at T c , with the energy difference between the two minima increasing by ∼6 meV between T c and 52 K. Sr 2 CuO 3.3 undergoes a radically larger transformation at T c , >1-Å displacements of the apical O atoms. The principal feature of the dynamical structure underlying these transformations is the strongly anharmonic oscillation of the apical O atoms in a double-well potential that results in the observation of two distinct O sites whose Cu–O distances indicate different bonding modes and valence-charge distributions. The coupling of the superconductivity to the iqtp that originates in this nonadiabatic coupling between the electrons and lattice demonstrates an important role for the dynamical structure whereby pairing occurs even in a system where displacements of the atoms that are part of the transition are sufficiently large to alter the Fermi surface. The synchronization and dynamic coherence of the iqtps resulting from the strong interactions within a crystal would be expected to influence this process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    