Abstract High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices. 
                        more » 
                        « less   
                    
                            
                            The role of Co valence in charge transport in the entropy‐stabilized oxide (Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 )O
                        
                    
    
            Abstract Many of the studies on the entropy‐stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O have been heavily application‐based. Previous works have studied effects of cation stoichiometry on the entropy‐driven reaction to form a single phase, but a fundamental exploration of the effects of anion stoichiometry and/or redox chemistry on electrical properties is lacking. Using near‐edge X‐ray absorption fine structure (NEXAFS) and electrical measurements, we show that oxidizing thin film samples of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O affects primarily the valence of Co, leaving the other cations in this high‐entropy system unchanged. This oxidation increases electrical conduction in these thin films, which occurs via small polaron hopping mediated by the Co valence shift from 2+ to a mixed 2+/3+ state. In parallel, we show that bulk samples sintered in an oxygen‐rich atmosphere have a lower activation energy for electrical conduction than those equilibrated in a nitrogen (reducing) atmosphere. Combining feasible defect compensation scenarios with electrical impedance measurements and NEXAFS data, we propose a self‐consistent interpretation of Co redox‐mediated small polaron conduction as the dominant method of charge transfer in this system. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10384634
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 106
- Issue:
- 2
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- p. 1531-1539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Interest in high‐entropy inorganic compounds originates from their ability to stabilize cations and anions in local environments that rarely occur at standard temperature and pressure. This leads to new crystalline phases in many‐cation formulations with structures and properties that depart from conventional trends. The highest‐entropy homogeneous and random solid solution is a parent structure from which a continuum of lower‐entropy offspring can originate by adopting chemical and/or structural order. This report demonstrates how synthesis conditions, thermal history, and elastic and chemical boundary conditions conspire to regulate this process in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, during which coherent CuO nanotweeds and spinel nanocuboids evolve. We do so by combining structured synthesis routes, atomic‐resolution microscopy and spectroscopy, density functional theory, and a phase field modeling framework that accurately predicts the emergent structure and local chemistry. This establishes a framework to appreciate, understand, and predict the macrostate spectrum available to a high‐entropy system that is critical to rationalizing property engineering opportunities.more » « less
- 
            Bulk, polycrystalline (Co, Cu, Mg, Ni, Zn)O was synthesized using solid-state sintering. Micropillars were prepared and mechanically deformed along three crystallographic orientations: (001), (101), and (111). Pillars (001) and (111) cracked, while Pillar (101) remained intact. Pillars (001) and (101) exhibited activated slip systems, confirmed by a large stress drop, and the presence of slip bands, respectively. Schmid factor (SF) analysis was performed to examine the effect of grain orientations on dislocation activity and slip behavior. SF values range from 0 to 0.5, with non-zero values indicating potential for slip. Six slip systems exist in the (Co, Cu, Mg, Ni, Zn)O rock salt crystal structure: 1/2⟨110⟩11¯0. For the (001) orientation, four slip systems are potentially active (SF = 0.5). For the (101) orientation, there are four potentially active slip systems (SF = 0.25). For the (111) orientation, no potentially active slips systems exist (SF = 0). Dislocation structures, which were observed post-compression via transmission electron microscopy, demonstrated variations in size, number, and distribution across the pillar, depending on micropillar orientation. Entangled dislocations created misorientation in Pillar (001), which led to the possible formation of subgrains, while singular dislocations were observed in Pillar (101), and a lack of dislocations was observed in Pillar (111). Zener–Stroh type dislocation entanglement-mediated cracking is the proposed cause of the transgranular-type cracks in Pillar (001). The possible subgrain formation, or lack of formation, respectively, caused intergranular-type cracks to additionally form in Pillar (001), while Pillar (111) only exhibited transgranular-type brittle fracture. In combination, these findings highlight the importance of dislocation activity, without the need for elevated temperature, and grain orientation in controlling the mechanical deformation response in single-phase (Co, Cu, Mg, Ni, Zn)O.more » « less
- 
            Abstract Entropy‐stabilized oxide (ESO) research has primarily focused on discovering unprecedented structures, chemistries, and properties in the single‐phase state. However, few studies discuss the impacts of entropy stabilization and secondary phases on functionality and in particular, electrical conductivity. To address this gap, electrical transport mechanisms in the canonical ESO rocksalt (Co,Cu,Mg,Ni,Zn)O are assessed as a function of secondary phase content. When single‐phase, the oxide conducts electrons via Cu+/Cu2+small polarons. After 2 h of heat treatment, Cu‐rich tenorite secondary phases form at some grain boundaries (GBs), enhancing grain interior electronic conductivity by tuning defect chemistry toward higher Cu+carrier concentrations. 24 h of heat treatment yields Cu‐rich tenorite at all GBs, followed by the formation of anisotropic Cu‐rich tenorite and equiaxed Co‐rich spinel secondary phases in grains, further enhancing grain interior electronic conductivity but slowing electronic transport across the tenorite‐rich GBs. Across all samples, the total electrical conductivity increases (and decreases reversibly) by four orders of magnitude with heat‐treatment‐induced phase transformation by tuning the grains’ defect chemistry toward higher carrier concentration and lower migration activation energy. This work demonstrates the potential to selectively grow secondary phases in ESO grains and at GBs, thereby tuning the electrical properties using microstructure design, nanoscale engineering, and heat treatment, paving the way to develop many novel materials.more » « less
- 
            Abstract High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstractmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
