skip to main content


Title: Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization
We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles.  more » « less
Award ID(s):
1715984 1244180
NSF-PAR ID:
10061923
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
3
ISSN:
1744-683X
Page Range / eLocation ID:
368 to 378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many intrinsically disordered peptides have been shown to undergo liquid–liquid phase separation and form complex coacervates, which play various regulatory roles in the cell. Recent experimental studies found that such phase separation processes may also occur at the lipid membrane surface and help organize biomolecules during signaling events; in some cases, phase separation of proteins at the membrane surface was also observed to lead to significant remodeling of the membrane morphology. The molecular mechanisms that govern the interactions between complex coacervates and lipid membranes and the impacts of such interactions on their structure and morphology, however, remain unclear. Here we study the coacervation of poly-glutamate (E 30 ) and poly-lysine (K 30 ) in the presence of lipid bilayers of different compositions. We carry out explicit-solvent coarse-grained molecular dynamics simulations by using the MARTINI (v3.0) force-field. We find that more than 20% anionic lipids are required for the coacervate to form stable contact with the bilayer. Upon wetting, the coacervate induces negative curvature to the bilayer and facilitates local lipid demixing, without any peptide insertion. The magnitude of negative curvature, extent of lipid demixing, and asphericity of the coacervate increase with the concentration of anionic lipids. Overall, we observe a decrease in the number of contacts among the polyelectrolytes as the droplet spreads over the bilayer. Therefore, unlike previous suggestions, interactions among polyelectrolytes do not constitute a driving force for the membrane bending upon wetting by the coacervate. Rather, analysis of interaction energy components suggests that bending of the membrane is favored by enhanced interactions between polyelectrolytes with lipids as well as with counterions. Kinetic studies reveal that, at the studied polyelectrolyte concentrations, the coacervate formation precedes bilayer wetting. 
    more » « less
  2. Complex coacervation is an associative, liquid–liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer–polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches. 
    more » « less
  3. Abstract Significance Statement

    The complexity of the in‐cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.

     
    more » « less
  4. Studies of proteins from one organism in another organism’s cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro. 
    more » « less
  5. Abstract

    Cell‐free metabolic engineering is an emerging and promising alternative platform for the production of fuels and chemicals. In recent years, macromolecular crowding effect, which is an important function in living cells but ignored in cell‐free systems, has been transferred to cell‐free protein synthesis (CFPS). However, inhibitory effects of crowding agents on CFPS were frequently observed, and the mechanism is unclear. In this study, free Mg2+was found to be a key factor that can regulate the macromolecular crowding effect onin vitrotranscription,in vitrotranslation, and coupled transcript/translation. Addition of crowding agents (20% of Ficoll‐70 or Ficoll‐400) enhancedin vitrotranscription at an index of free Mg2+concentration (IFMC) below 2 mM but inhibited the transcription when the IFMC was higher than 2 mM. Similarly, Ficoll‐400 enhancedin vitrotranslation and coupled transcription/translation at a lower IFMC (0.1–2 mM) and inhibited the reactions at higher IFMC (>2 mM). Based on the results, CFPS systems could be further optimized by adjusting the content of crowding agents and the IFMC. Besides, the results also indicate that macromolecular crowding effect is important for maintaining the efficiency ofin vivotranscription and translation which occur at a low intracellular IFMC (<1 mM).

     
    more » « less