skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System
Aqueous two-phase systems (ATPSs) have long been used for the facile and rapid extraction of biomolecules of interest. Selective partitioning of DNA is useful for nucleic acid purification and in the design of novel sensing technologies. This paper investigates the partitioning of a plasmid within a poorly understood ATPS comprising the polymers poly(ethylene glycol) (PEG) 35 kDa and Ficoll 400 kDa. The focus is placed on dissecting the compositional effects of the ATPS—that is, whether set concentrations of physiological ions or the polymers themselves can tune DNA phase preference and strength of partitioning. The work here uncovers the antagonistic effects of magnesium and ammonium ions, as well as the role that phase-forming polymer partitioning plays in plasmid enrichment. Testing the ions in conjunction with different ATPS formulations highlights the complexity of the system at hand, prompting the exploration of DNA’s conformational changes in response to polymer and salt presence. The work presented here offers multiple optimization parameters for downstream applications of PEG–Ficoll ATPSs, such as in vitro transcription/translation-based biosensing, in which performance is heavily dependent upon nucleic acid partitioning.  more » « less
Award ID(s):
2319391
PAR ID:
10613052
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Chemistry
Volume:
6
Issue:
6
ISSN:
2624-8549
Page Range / eLocation ID:
1680 to 1691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles. 
    more » « less
  2. Aqueous two-phase systems (ATPS) are useful in various applications, from purification and separation of biomolecules to wastewater treatment. While they have great utility on their own, there is great interest in discovering how their emulsions, comprising droplets of one aqueous phase dispersed in the other aqueous phase, might be stabilized to enhance their functionality and applications. There are several examples of these systems, but the two most common systems found in the literature are PEG–dextran and complex coacervate ATPS. In this Review, we discuss these systems, their utility, and many different approaches for stabilizing their water/water (w/w) emulsions. We highlight examples wherein interfacial stabilizers such as liposomes, polymers of diverse architectures, colloids of varied shapes and morpholo- gies, and even whole cells have been employed. These stabilization approaches for both PEG–dextran and complex coacervate ATPS are discussed. We conclude with a discussion of the applications of these ATPS and how they can benefit from the creation of corresponding w/w emulsions with stabilized droplets. 
    more » « less
  3. Abstract Xeno-nucleic acids (XNAs) have gained significant interest as synthetic genetic polymers for practical applications in biomedicine, but very little is known about their biophysical properties. Here, we compare the stability and mechanism of acid-mediated degradation of α-l-threose nucleic acid (TNA) to that of natural DNA and RNA. Under acidic conditions and elevated temperature (pH 3.3 at 90°C), TNA was found to be significantly more resistant to acid-mediated degradation than DNA and RNA. Mechanistic insights gained by reverse-phase HPLC and mass spectrometry indicate that the resilience of TNA toward low pH environments is due to a slower rate of depurination caused by induction of the 2′-phosphodiester linkage. Similar results observed for 2′,5′-linked DNA and 2′-O-methoxy-RNA implicate the position of the phosphodiester group as a key factor in destabilizing the formation of the oxocarbenium intermediate responsible for depurination and strand cleavage of TNA. Biochemical analysis indicates that strand cleavage occurs by β-elimination of the 2′-phosphodiester linkage to produce an upstream cleavage product with a 2′-threose sugar and a downstream cleavage product with a 3′ terminal phosphate. This work highlights the unique physicochemical properties available to evolvable non-natural genetic polymers currently in development for biomedical applications. 
    more » « less
  4. Nucleic acid therapeutics have the potential to be the most effective disease treatment strategy due to their intrinsic precision and selectivity for coding highly specific biological processes. However, freely administered nucleic acids of any type are quickly destroyed or rendered inert by a host of defense mechanisms in the body. In this work, we address the challenge of using nucleic acids as drugs by preparing stimuli responsive poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules loaded with ~7 kDa G-quadruplex DNA. The capsules are shown to release their DNA cargo on demand in response to both enzymatic and ultrasound (US)-triggered degradation. The unique structure adopted by the G-quadruplex is essential to its biological function and we show that the controlled release from the microcapsules preserves the basket conformation of the oligonucleotide used in our studies. We also show that the (PMAA/PVPON) multilayer hydrogel capsules can encapsulate and release ~450 kDa double stranded DNA. The encapsulation and release approaches for both oligonucleotides in multilayer hydrogel microcapsules developed here can be applied to create methodologies for new therapeutic strategies involving the controlled delivery of sensitive biomolecules. Our study provides a promising methodology for the design of effective carriers for DNA vaccines and medicines for a wide range of immunotherapies, cancer therapy and/or tissue regeneration therapies in the future. 
    more » « less
  5. null (Ed.)
    Abstract The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA. 
    more » « less