skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WiFED: WiFi Friendly Energy Delivery with Distributed Beamforming
Wireless RF energy transfer for indoor sensors is an emerging paradigm that ensures continuous operation without battery limitations. However, high power radiation within the ISM band interferes with the packet reception for existing WiFi devices. The paper proposes the first effort in merging the RF energy transfer functions within a standards compliant 802.11 protocol to realize practical and WiFi-friendly Energy Delivery (WiFED). The WiFED architecture is composed of a centralized controller that coordinates the actions of multiple distributed energy transmitters (ETs), and a number of deployed sensors that periodically request energy from the ETs. The paper first describes the specific 802.11 supported protocol features that can be exploited by sensors to request energy and for the ETs to participate in the energy delivery process. Second, it devises a controller-driven bipartite matching-based algorithmic solution that assigns the appropriate number of ETs to energy requesting sensors for an efficient energy transfer process. The proposed in-band and protocol supported coexistence in WiFED is validated via simulations and partly in a software defined radio testbed, showing 15% improvement in network lifetime and 31% reduction in the charging delay compared to the classical nearest distance-based charging schemes that do not anticipate future energy needs of the sensors and are not designed to co-exist with WiFi systems.  more » « less
Award ID(s):
1701041
PAR ID:
10062184
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE INFOCOM
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad range of students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience. 
    more » « less
  2. In wireless networked control systems, ensuring predictable communication link reliabilities among sensors, controllers, and actuators is critical. In such scenarios, different data gathered at the application layer of each sender require different packet delivery ratios (i.e., reliabilities). The lower layers try to accommodate these requests by first mapping each of them into a service level and then deliver the associated data packets to the receiver at the mapped service level. Due to resource constraints and maintenance overhead, the number of supported service levels is usually limited. An important question is then how to determine the set of service levels to maintain and how to map each request to an appropriate service level, such that the requested reliabilities are guaranteed and the total cost of mapping is minimized? We formally formulate this as an optimal request clustering problem since each service level acts as a cluster and can host multiple requests. In particular, we formulate the Migratory Clustering Problem and the Non-Migratory Clustering Problem, depending on whether a request can migrate from one service level to another after its initial assignment. We propose two optimal algorithms to solve both problems. 
    more » « less
  3. The lack of adequate training data is one of the major hurdles in WiFi-based activity recognition systems. In this paper, we propose Wi-Fringe, which is a WiFi CSI-based devicefree human gesture recognition system that recognizes named gestures, i.e., activities and gestures that have a semantically meaningful name in English language, as opposed to arbitrary free-form gestures. Given a list of activities (only their names in English text), along with zero or more training examples (WiFi CSI values) per activity, Wi-Fringe is able to detect all activities at runtime. We show for the first time that by utilizing the state-of-the-art semantic representation of English words, which is learned from datasets like the Wikipedia (e.g., Google's word-to-vector [1]) and verb attributes learned from how a word is defined (e.g, American Heritage Dictionary), we can enhance the capability of WiFi-based named gesture recognition systems that lack adequate training examples per class. We propose a novel cross-domain knowledge transfer algorithm between radio frequency (RF) and text to lessen the burden on developers and end-users from the tedious task of data collection for all possible activities. To evaluate Wi-Fringe, we collect data from four volunteers in a multi-person apartment and an office building for a total of 20 activities. We empirically quantify the trade-off between the accuracy and the number of unseen activities. 
    more » « less
  4. In this paper, we propose a novel, generalizable, and scalable idea that eliminates the need for collecting Radio Frequency (RF) measurements, when training RF sensing systems for human-motion-related activities. Existing learning-based RF sensing systems require collecting massive RF training data, which depends heavily on the particular sensing setup/involved activities. Thus, new data needs to be collected when the setup/activities change, significantly limiting the practical deployment of RF sensing systems. On the other hand, recent years have seen a growing, massive number of online videos involving various human activities/motions. In this paper, we propose to translate such already-available online videos to instant simulated RF data for training any human-motion-based RF sensing system, in any given setup. To validate our proposed framework, we conduct a case study of gym activity classification, where CSI magnitude measurements of three WiFi links are used to classify a person's activity from 10 different physical exercises. We utilize YouTube gym activity videos and translate them to RF by simulating the WiFi signals that would have been measured if the person in the video was performing the activity near the transceivers. We then train a classifier on the simulated data, and extensively test it with real WiFi data of 10 subjects performing the activities in 3 areas. Our system achieves a classification accuracy of 86% on activity periods, each containing an average of 5.1 exercise repetitions, and 81% on individual repetitions of the exercises. This demonstrates that our approach can generate reliable RF training data from already-available videos, and can successfully train an RF sensing system without any real RF measurements. The proposed pipeline can also be used beyond training and for analysis and design of RF sensing systems, without the need for massive RF data collection. 
    more » « less
  5. In this paper, we propose a multi-band medium access control (MAC) protocol for an infrastructure-based network with an access point (AP) that supports In-Band full-duplex (IBFD) and multiuser transmission to multi-band-enabled stations. The Multi-Band Full Duplex MAC (MB-FDMAC) protocol mainly uses the sub-6 GHz band for control-frame exchange, transmitted at the lowest rate per IEEE 802.11 standards, and uses the 60 GHz band, which has significantly higher instantaneous bandwidth, exclusively for data-frame exchange. We also propose a selection method that ensures fairness among uplink and downlink stations. Our result shows that MB-FDMAC effectively improves the spectral efficiency in the mmWave band by 324%, 234%, and 189% compared with state-of-the-art MAC protocols. In addition, MB-FDMAC significantly outperforms the combined throughput of sub-6 GHz and 60 GHz IBFD multiuser MIMO networks that operate independently by more than 85%. In addition, we study multiple network variables such as the number of stations in the network, the percentage of mmWave band stations, the size of the contention stage, and the selection method on MB-FDMAC by evaluating the change in the throughput, packet delay, and fairness among stations. Finally, we propose a method to improve the utilization of the high bandwidth of the mmWave band by incorporating time duplexing into MB-FDMAC, which we show can enhance the fairness by 12.5%and significantly reduces packet delay by 80%. 
    more » « less