skip to main content

Title: Board 3: Engineering Technology Scholars-IMProving Retention and Student Success (ETS-IMPRESS): First Year Progress Repo
Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad range of more » students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1742286
Publication Date:
NSF-PAR ID:
10128988
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. Student reflections and using individual development plans (IDPs) for mentoring have been an integral part of an NSF S-STEM project focusing on students pursuing baccalaureate degrees in Engineering Technology (ET). The Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and offers students several high-impact curricular and co-curricular activities to increase the success of academically talented students. This interdisciplinary project brings together the Electrical Engineering Technology, and Computer Network and System Administration programs in the College of Computing and the College of Engineering’s Mechanical Engineering Technology program, with programs in the Pavlis Honors College, an inclusive and unique college designed around high-impact educational practices. An IDP is commonly used in business and industry to assist employees in meeting short- and long-term goals in their professional career. This tool has been adapted for use in the educational setting in a faculty mentoring capacity. The ET program advisors assign the freshman or transfer S-STEM student scholars with faculty mentors to match their area of research interest. The faculty mentors meet with the students a minimum of three to four times a year to review their IDP, make suggestions, and provide input for reaching their goals. The goalsmore »of the IDP process are to develop a deeper more meaningful relationship between the advisor and student, reflect and develop a strategy for the scholar’s educational and career success, and manage expectations and identify opportunities. In the initial meeting there are several prompts for the student to write about their goals, strengths, weaknesses and perceived challenges. In subsequent meetings the advisor and student revisit the IDP to discuss progress towards those goals. This study will describe some outcomes of the IDP process providing specific examples from each of the ET programs. Although it is difficult to measure the effect of these relationships, it is one of the high impact practices that have been noted as increasing student engagement and retention. The consequences of COVID-19 introducing a virtual environment to the IDP process will also be examined from the viewpoint of both student and advisor. An advantage of the IDP meetings for students is that advisors may provide personal business connections for internship opportunities and/or research projects that otherwise would not be discussed in a typical office hour or classroom session. One of the innovations of the ETS-IMPRESS program was requiring participation in the Honors Pathway Program, which generally emphasizes intrinsic motivation (and does not use GPA in admissions or awarding of credentials). The honors program consists of three seminar classes and four experiential components; for all of these, students write reflections designed to promote their development of self-authorship. Preliminary survey results show no difference between ETS and other honors students in the areas of student motivation, intention to persist, and professional skill development. ETS students see a closer link between their current major and their future career than non-ETS honors students. A comparative analysis of reflections will investigate students’ perceptions of the program’s effect.« less
  2. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and facultymore »mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented.« less
  3. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine tomore »improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).« less
  4. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine tomore »improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).« less
  5. This paper provides detailed information for a poster that will be presented in the National Science Foundation (NSF) Grantees Poster Session during the 2020 ASEE Annual Conference & Exposition. The poster describes the progress and the state of an NSF Scholarships in Science, Technology, Engineering, and Math (S-STEM) project. The objectives of this project are to 1) enhance student learning by providing access to extra- and co-curricular experiences, 2) create a positive student experience through mentorship, and 3) ensure successful student placement in the STEM workforce or graduate school. S-STEM Scholars supported by this program receive financial, academic, professional, and social development via various evidence-based activities integrated throughout their four-year undergraduate degrees beginning during the summer prior to starting at the University. The paper describes the characteristics (demographics, high school GPA, ACT/SAT scores, etc.) of the Scholars supported by the S-STEM grant. The paper also provides information about the completed tasks of the project to date. The completed tasks include a system for recruiting academically talented and economically disadvantaged students, a Summer Bridge Program (SBP), a first semester introductory engineering course, and a system to recruit and maintain faculty mentors. The ongoing tasks include the execution of a service learningmore »project course and a system for recruiting industry mentors. This paper reports detailed assessment and evaluation data about different project tasks and the academic success metrics of the Scholars. It also lists a set of recommendations based on the lessons learned in this S-STEM project.« less