Abstract The performance of muon tracking, identification, triggering, momentum resolution, and momentum scale has been studied with the CMS detector at the LHC using data collected at ā(sNN) = 5.02 TeV in proton-proton (pp) and lead-lead (PbPb) collisions in 2017 and 2018, respectively, and at ā(sNN) = 8.16 TeV in proton-lead (pPb) collisions in 2016. Muon efficiencies, momentum resolutions, and momentum scales are compared by focusing on how the muon reconstruction performance varies from relatively small occupancy pp collisions to the larger occupancies of pPb collisions and, finally, to the highest track multiplicity PbPb collisions. We find the efficiencies of muon tracking, identification, and triggering to be above 90% throughout most of the track multiplicity range. The momentum resolution and scale are unaffected by the detector occupancy. The excellent muon reconstruction of the CMS detector enables precision studies across all available collision systems.
more »
« less
The ALICE Transition Radiation Detector: Construction, operation, and performance
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/š in pāPb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
more »
« less
- Award ID(s):
- 1719759
- PAR ID:
- 10062186
- Date Published:
- Journal Name:
- Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
- Volume:
- 881
- Issue:
- C
- ISSN:
- 0168-9002
- Page Range / eLocation ID:
- 88 to 127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of signal collision events. The track reconstruction is performed by exploiting hit cluster information through a novel method using a common polygonal area in the intercept-slope plane. The technique is applied in the relative alignment of detector layers with μm precision. A tag-and-probe method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system is performed through time-dependent adjustments, resulting in a position accuracy of 3 μm in the horizontal and 60 μm in the vertical directions. The goal is to provide an optimal reconstruction tool for central exclusive physics analyses based on the high-β* data-taking period at ā(s) = 13 TeV in 2018.more » « less
-
Abstract The CEBAF Large Acceptance Spectrometer for operation at 12 GeV beam energy (CLAS12) in Hall B at Jefferson Laboratory is used to study electro-induced nuclear and hadronic reactions. This spectrometer provides efficient detection of charged and neutral particles over a large fraction of the full solid angle. CLAS12 has been part of the energy-doubling project of Jefferson Labās Continuous Electron Beam Accelerator Facility, funded by the United States Department of Energy. An international collaboration of 48 institutions contributed to the design and construction of detector hardware, developed the software packages for the simulation of complex event patterns, and commissioned the detector systems. CLAS12 is based on a dual-magnet system with a superconducting torus magnet that provides a largely azimuthal field distribution that covers the forward polar angle range up to 35 , and a solenoid magnet and detector covering the polar angles from 35° to 125° with full azimuthal coverage. Trajectory reconstruction in the forward direction using drift chambers and in the central direction using a vertex tracker results in momentum resolutions of 1% and 3%, respectively. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of cmā2sā1. These capabilities are being used in a broad program to study the structure and interactions of nucleons, nuclei, and mesons, using polarized and unpolarized electron beams and targets for beam energies up to 11 GeV. This paper gives a general description of the design, construction, and performance of CLAS12.more » « less
-
Abstract A search for long-lived charginos produced either directly or in the cascade decay of heavy prompt gluino states is presented. The search is based on protonāproton collision data collected at a centre-of-mass energy of $$\sqrt{s}$$ s = 13 T $$\text {eV}$$ eV between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 136 fb $$^{-1}$$ - 1 . Long-lived charginos are characterised by a distinct signature of a short and then disappearing track, and are reconstructed using at least four measurements in the ATLAS pixel detector, with no subsequent measurements in the silicon-microstrip tracking volume nor any associated energy deposits in the calorimeter. The final state is complemented by a large missing transverse-momentum requirement for triggering purposes and at least one high-transverse-momentum jet. No excess above the expected backgrounds is observed. Exclusion limits are set at 95% confidence level on the masses of the chargino and gluino for different chargino lifetimes. Chargino masses up to 660 (210) G $$\text {eV}$$ eV are excluded in scenarios where the chargino is a pure wino (higgsino). For charginos produced during the cascade decay of a heavy gluino, gluinos with masses below 2.1 T $$\text {eV}$$ eV are excluded for a chargino mass of 300 G $$\text {eV}$$ eV and a lifetime of 0.2 ns.more » « less
-
Abstract Efficient and accurate algorithms are necessary to reconstruct particles in the highly granular detectors anticipated at the High-Luminosity Large Hadron Collider and the Future Circular Collider. We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation. Particle-flow reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters. We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid quadratic operations while achieving realistic reconstruction. We show that hyperparameter tuning significantly improves the performance of the models. The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm. The resulting model is portable across Nvidia, AMD and Habana hardware. Accurate and fast machine-learning based reconstruction can significantly improve future measurements at colliders.more » « less
An official website of the United States government

