skip to main content


Title: Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes
Abstract

Photoelectrodes without a p–n junction are often limited in efficiency by charge recombination at semiconductor surfaces and slow charge transfer to electrocatalysts. This study reports that tin oxide (SnOx) layers applied to n‐Si wafers after forming a thin chemically oxidized SiOxlayer can passivate the Si surface while producing ≈620 mV photovoltage under 100 mW cm−2of simulated sunlight. The SnOxlayer makes ohmic contacts to Ni, Ir, or Pt films that act as precatalysts for the oxygen‐evolution reaction (OER) in 1.0mKOH(aq) or 1.0mH2SO4(aq). Ideal regenerative solar‐to‐O2(g) efficiencies of 4.1% and 3.7%, respectively, are obtained in 1.0mKOH(aq) with Ni or in 1.0mH2SO4(aq) with Pt/IrOxlayers as OER catalysts. Stable photocurrents for >100 h are obtained for electrodes with patterned catalyst layers in both 1.0mKOH(aq) and 1.0mH2SO4(aq).

 
more » « less
NSF-PAR ID:
10062528
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
8
Issue:
24
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2through nitrogen (N) doping is demonstrated. N‐doped Ni3S2nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm−2and an excellent exchange current density of 0.42 mA cm−2in 1.0mKOH electrolyte. The mass activity of 16.9 mA mg−1and turnover frequency of 2.4 s−1obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts.

     
    more » « less
  2. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band.

    We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3.

    Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.

    References

    Lee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.

    Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.

    Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17.

    Figure 1

     

    more » « less
  3. Abstract

    Transition metal sulfides with a multi‐elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high‐entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)Sx) solid solution nanoparticles is reported. Computational and X‐ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)Sxexhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)Sxnanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm−2in 1mKOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high‐entropy compound nanoparticles for highly efficient electrocatalysis applications.

     
    more » « less
  4. Abstract

    We measure abundances of 12 elements (Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni) in a sample of 86 metal-poor (−2 ≲ [Fe/H] ≲ −1) subgiant stars in the solar neighborhood. Abundances are derived from high-resolution spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope, modeled using iSpec and MOOG. By carefully quantifying the impact of photon-noise (<0.05 dex for all elements), we robustly measure theintrinsicscatter of abundance ratios. At fixed [Fe/H], the rms intrinsic scatter in [X/Fe] ranges from 0.04 (Cr) to 0.16 dex (Na), with a median of 0.08 dex. Scatter in [X/Mg] is similar, and accounting for [α/Fe] only reduces the overall scatter moderately. We consider several possible origins of the intrinsic scatter with particular attention to fluctuations in the relative enrichment by core-collapse supernovae (CCSN) and Type Ia supernovae and stochastic sampling of the CCSN progenitor mass distribution. The stochastic sampling scenario provides a good quantitative explanation of our data if the effective number of CCSN contributing to the enrichment of a typical sample star isN∼ 50. At the median metallicity of our sample, this interpretation implies that the CCSN ejecta are mixed over a gas mass ∼6 × 104Mbefore forming stars. The scatter of elemental abundance ratios is a powerful diagnostic test for simulations of star formation, feedback, and gas mixing in the early phases of the Galaxy.

     
    more » « less
  5.  
    more » « less