skip to main content


Title: Theoretical and Experimental Insight into the Effect of Nitrogen Doping on Hydrogen Evolution Activity of Ni 3 S 2 in Alkaline Medium
Abstract

Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2through nitrogen (N) doping is demonstrated. N‐doped Ni3S2nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm−2and an excellent exchange current density of 0.42 mA cm−2in 1.0mKOH electrolyte. The mass activity of 16.9 mA mg−1and turnover frequency of 2.4 s−1obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts.

 
more » « less
NSF-PAR ID:
10056724
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
8
Issue:
19
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transition metal‐nitrogen‐carbon materials with atomically dispersed active sites are promising catalysts for oxygen evolution reaction (OER) since they combine the strengths of both homogeneous and heterogeneous catalysts. However, the canonically symmetric active site usually exhibits poor OER intrinsic activity due to its excessively strong or weak oxygen species adsorption. Here, a catalyst with asymmetric MN4sites based on the 3‐s‐triazine of g‐C3N4(termed as a‐MN4@NC) is proposed. Compared to symmetric, the asymmetric active sites directly modulate the oxygen species adsorption via unifying planar and axial orbitals (dx2y2, dz2), thus enabling higher OER intrinsic activity. In Silico screening suggested that cobalt has the best OER activity among familiar nonprecious transition metal. These experimental results suggest that the intrinsic activity of asymmetric active sites (179 mV overpotential at onset potential) is enhanced by 48.4% compared to symmetric under similar conditions. Remarkably, a‐CoN4@NC showed excellent activity in alkaline water electrolyzer (AWE) device as OER catalyst, the electrolyzer only required 1.7 V and 2.1 V respectively to reach the current density of 150 mA cm−2and 500 mA cm−2. This work opens an avenue for modulating the active sites to obtain high intrinsic electrocatalytic performance including, but not limited to, OER.

     
    more » « less
  2. Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternary mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity. 
    more » « less
  3. Designing efficient electrocatalysts has been one of the primary goals for water electrolysis, which is one of the most promising routes towards sustainable energy generation from renewable sources. In this article, we have tried to expand the family of transition metal chalcogenide based highly efficient OER electrocatalysts by investigating nickel telluride, Ni 3 Te 2 as a catalyst for the first time. Interestingly Ni 3 Te 2 electrodeposited on a GC electrode showed very low onset potential and overpotential at 10 mA cm −2 (180 mV), which is the lowest in the series of chalcogenides with similar stoichiometry, Ni 3 E 2 (E = S, Se, Te) as well as Ni-oxides. This observation falls in line with the hypothesis that increasing the covalency around the transition metal center enhances catalytic activity. Such a hypothesis has been previously validated in oxide-based electrocatalysts by creating anion vacancies. However, this is the first instance where this hypothesis has been convincingly validated in the chalcogenide series. The operational stability of the Ni 3 Te 2 electrocatalyst surface during the OER for an extended period of time in alkaline medium was confirmed through surface-sensitive analytical techniques such as XPS, as well as electrochemical methods which showed that the telluride surface did not undergo any corrosion, degradation, or compositional change. More importantly we have compared the catalyst activation step (Ni 2+ → Ni 3+ oxidation) in the chalcogenide series, through electrochemical cyclic voltammetry studies, and have shown that catalyst activation occurs at lower applied potential as the electronegativity of the anion decreases. From DFT calculations we have also shown that the hydroxyl attachment energy is more favorable on the Ni 3 Te 2 surface compared to the Ni-oxide, confirming the enhanced catalytic activity of the telluride. Ni 3 Te 2 also exhibited efficient HER catalytic activity in alkaline medium making it a very effective bifunctional catalyst for full water splitting with a cell voltage of 1.66 V at 10 mA cm −2 . It should be noted here that this is the first report of OER and HER activity in the family of Ni-tellurides. 
    more » « less
  4. Abstract

    Metal–organic frameworks (MOFs) and MOF‐derived nanostructures are recently emerging as promising catalysts for electrocatalysis applications. Herein, 2D MOFs nanosheets decorated with Fe‐MOF nanoparticles are synthesized and evaluated as the catalysts for water oxidation catalysis in alkaline medium. A dramatic enhancement of the catalytic activity is demonstrated by introduction of electrochemically inert Fe‐MOF nanoparticles onto active 2D MOFs nanosheets. In the case of active Ni‐MOF nanosheets (Ni‐MOF@Fe‐MOF), the overpotential is 265 mV to reach a current density of 10 mA cm−2in 1mKOH, which is lowered by ≈100 mV after hybridization due to the 2D nanosheet morphology and the synergistic effect between Ni active centers and Fe species. Similar performance improvement is also successfully demonstrated in the active NiCo‐MOF nanosheets. More importantly, the real catalytic active species in the hybrid Ni‐MOF@Fe‐MOF catalyst are unraveled. It is found that, NiO nanograins (≈5 nm) are formed in situ during oxygen evolution reaction (OER) process and act as OER active centers as well as building blocks of the porous nanosheet catalysts. These findings provide new insights into understanding MOF‐based catalysts for water oxidation catalysis, and also shed light on designing highly efficient MOF‐derived nanostructures for electrocatalysis.

     
    more » « less
  5. Abstract

    The development of non‐noble metal materials for efficient hydrogen evolution reaction (HER) in wide pH range is still a challenge at present. Herein, a predesigned polyoxometalate (POM)‐based metal–organic polymer {L3Co2 · 6H2O}[H3GeMo12O40] · 9H2O (L = 1,2,4‐triazole) is employed as bimetallic source together with thiourea converting to CoS2@MoS2on carbon cloth (CC) (abbreviated to CoS2@MoS2@CC) for the first time. Impressively, the CoS2@MoS2in the form of vertically interconnected nanoarrays with multiple interfaces are grown in situ on CC and act as electrodes directly for HER. The CoS2@MoS2@CC‐30h composite exhibits superb activity and long‐durability in both acidic and alkaline media. Low overpotential is achieved in 0.5mH2SO4(65 mV) and 1.0mKOH (87 mV) for 10 mA cm−2versus RHE, which overmatch major MoS2‐/POM‐based electrocatalysts. This work therefore may shed substantial lights on designing active and durable molybdenum‐based bi‐/polymetallic sulfide from variable POM‐based metal–organic polymers for electrocatalytic hydrogen evolution reaction in wide pH range.

     
    more » « less