skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy
Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation) capabilities of secondary organic aerosols (SOAs). The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE) using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K) that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS) was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects.  more » « less
Award ID(s):
1524731
PAR ID:
10062690
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
11
Issue:
6
ISSN:
1867-8548
Page Range / eLocation ID:
3479 to 3490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During their atmospheric lifetime, organic compounds within aerosols are exposed to sunlight and undergo photochemical processing. This atmospheric aging process changes the ability of organic aerosols to form cloud droplets and consequently impacts aerosol–cloud interactions. We recently reported changes in the cloud forming properties of aerosolized dissolved organic matter (DOM) due to a photomineralization mechanism, transforming high-molecular weight compounds in DOM into organic acids, CO and CO 2 . To strengthen the implications of this mechanism to atmospheric aerosols, we now extend our previous dataset and report identical cloud activation experiments with laboratory-generated secondary organic aerosol (SOA) extracts. The SOA was produced from the oxidation of α-pinene and naphthalene, a representative biogenic and anthropogenic source of SOA, respectively. Exposure of aqueous solutions of SOA to UVB irradiation increased the dried organic material's hygroscopicity and thus its ability to form cloud droplets, consistent with our previous observations for DOM. We propose that a photomineralization mechanism is also at play in these SOA extracts. These results help to bridge the gap between DOM and SOA photochemistry by submitting two differently-sourced organic matter materials to identical experimental conditions for optimal comparison. 
    more » « less
  2. Secondary organic aerosols contribute a large fraction to atmospheric aerosols. The phase states of secondary organic aerosols influence heterogeneous and multiphase chemistry in the atmosphere and thus climate. In previous studies we have used the dual tandem differential mobility analyzer technique to characterize the temperature- and humidity-dependent viscosity and glass transition temperature of suspended particles. However, the technique requires high particle number concentrations, is a complex setup, is expensive, and measurements are time consuming. Here we demonstrate a new simplified and more cost-effective method to obtain similar data. The technique was used to measure the temperature where the viscosity is ∼107 Pa s for submicron particles composed of binary and ternary mixtures of the sucrose/tartaric acid/citric acid system. Sucrose, tartaric acid and citric acid are taken as proxies for viscous organic aerosol components in the atmosphere. A subset of data were compared to measurements with the dual-tandem differential mobility analyzer method. Results show good agreement between the two techniques. The same mixed chemical systems were modeled using an updated version of the parametric phase diagram model described in Kasparoglu et al. (2021, https://doi.org/10.5194/acp-21-1127-2021) as well as the predictions with the viscosity module of the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients model (AIOMFAC-VISC). Results show that appropriately parameterized mixing rules are suitable to describe these mixtures. We anticipate that the new technique will accelerate discovery of aerosol phase transitions in aerosol research. 
    more » « less
  3. null (Ed.)
    Melting gels are a class of hybrid organic-inorganic silica based gels prepared via the sol-gel process that are solid below their glass transition temperatures, near room temperature, but show thermoplastic behavior when heated. While this phase change can be repeated multiple times, heating the gel past its consolidation temperatures, typically above 130 oC initiates an irreversible reaction that produces highly crosslinked glassy organic-inorganic materials via hydrolysis and poly-condensation. This ability makes melting gels uniquely compatible with processing techniques inaccessible to other sol-gels. By properly tuning their properties, it should be possible to create protective coatings for electronics and anti-corrosive coatings for metals that are highly hydrophobic and insulating. However, melting gel consolidation reactions are highly dependent on charge interactions, raising the question of how these materials will respond to a processing technique, like electrospray deposition (ESD), which is dependent on charge delivery. In this study, we focus on the role that substrate temperature and charge polarity play on film morphology, consolidation chemistry, and surface properties. Optical images, film thickness measurements, nanoindentation, and FTIR were used to characterize the sprayed melting gel with the goal of developing a robust processing space for producing highly cross linked, hydrophobic, dielectric coatings. 
    more » « less
  4. Abstract Chemical reactions between carbon dioxide (CO) and amine have been extensively characterized, however, their influence on the dynamics of polyamines remains largely unexplored. In this work, we compare the dynamics of polyethylenimine (PEI) before and after CO absorption through broadband dielectric spectroscopy (BDS). The molecular processes of bulk PEI are very different from those of thin film PEI, highlighting an interesting interface and nano‐confinement effect. Detailed analyses show CO absorption slows down the PEI dynamics, which is consistent with an elevated glass transition temperature of PEI upon CO absorption from differential scanning calorimetry measurements. Furtherin situkinetic measurements demonstrate nonmonotonic changes in relaxation times or dielectric amplitudes of some relaxation processes during CO sorption or desorption, suggesting an intriguing interplay between CO chemisorption and the dynamics of PEI. These results demonstrate that BDS is a powerful platform to resolve the temporal dynamics changes of polyamines for CO capture. 
    more » « less
  5. Abstract Atmospheric aerosol particles impact Earth's radiation balance by acting as seeds for cloud droplet formation. Over half of global cloud seed particles are formed by nucleation, a process where gas‐phase compounds react to form stable particles. Reactions of sulfuric acid (SA) with a wide variety of atmospheric compounds have been previously shown to drive nucleation in the lower troposphere. However, global climate models poorly predict particle nucleation rates since current nucleation models do not describe nucleation for systems containing tens to hundreds of precursor compounds. The nucleation potential model (NPM) was recently developed to model SA nucleation of complex mixtures by measuring an effective base concentration using a 1‐nm condensation particle counter. This technique for estimating particle nucleation rates can be deployed at a much higher spatial and temporal resolution than current methods which require detailed knowledge of all nucleation reactions and measurements, typically using a mass spectrometer, of all nucleation precursor gases. This work expands NPM by showing that this model can capture enhancement and suppression of SA nucleation rates within a complex mixture of organic and inorganic acids, ambient air, and across a range of atmospherically relevant relative humidities. In addition, an expression for calculating atmospheric nucleation rates was also derived from the NPM. Ultimately, NPM provides a simple way to measure and model the extent compounds in a complex mixture enhance SA nucleation rates using a condensation particle counter. 
    more » « less