skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series
Advances in technology coupled with the availability of low-cost sensors have resulted in the continuous generation of large time series from several sources. In order to visually explore and compare these time series at different scales, analysts need to execute online analytical processing (OLAP) queries that include constraints and group-by's at multiple temporal hierarchies. Effective visual analysis requires these queries to be interactive. However, while existing OLAP cube-based structures can support interactive query rates, the exponential memory requirement to materialize the data cube is often unsuitable for large data sets. Moreover, none of the recent space-efficient cube data structures allow for updates. Thus, the cube must be re-computed whenever there is new data, making them impractical in a streaming scenario. We propose Time Lattice, a memory-efficient data structure that makes use of the implicit temporal hierarchy to enable interactive OLAP queries over large time series. Time Lattice is a subset of a fully materialized cube and is designed to handle fast updates and streaming data. We perform an experimental evaluation which shows that the space efficiency of the data structure does not hamper its performance when compared to the state of the art. In collaboration with signal processing and acoustics research scientists, we use the Time Lattice data structure to design the Noise Profiler, a web-based visualization framework that supports the analysis of noise from cities. We demonstrate the utility of Noise Profiler through a set of case studies.  more » « less
Award ID(s):
1730396
PAR ID:
10062986
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Computer graphics forum
ISSN:
1467-8659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been a growing interest in the graph-streaming setting where a continuous stream of graph updates is mixed with graph queries. In principle, purely-functional trees are an ideal fit for this setting as they enable safe parallelism, lightweight snapshots, and strict serializability for queries. However, directly using them for graph processing leads to significant space overhead and poor cache locality. This paper presents C-trees, a compressed purely-functional search tree data structure that significantly improves on the space usage and locality of purely-functional trees. We design theoretically-efficient and practical algorithms for performing batch updates to C-trees, and also show that we can store massive dynamic real-world graphs using only a few bytes per edge, thereby achieving space usage close to that of the best static graph processing frameworks. To study the applicability of our data structure, we designed Aspen, a graph-streaming framework that extends the interface of Ligra with operations for updating graphs. We show that Aspen is faster than two state-of-the-art graph-streaming systems, Stinger and LLAMA, while requiring less memory, and is competitive in performance with the state-of-the-art static graph frameworks, Galois, GAP, and Ligra+. With Aspen, we are able to efficiently process the largest publicly-available graph with over two hundred billion edges in the graph-streaming setting using a single commodity multicore server with 1TB of memory. 
    more » « less
  2. Bitmap indexes are widely used for read-intensive analytical workloads because they are clustered and offer efficient reads with a small memory footprint. However, they are generally inefficient to update. As analytical applications are increasingly fused with transactional applications, leading to the emergence of hybrid transactional/analytical processing (HTAP), it is desirable that bitmap indexes support efficient concurrent real-time updates. In this paper, we propose Concurrent Updatable Bitmap indexing (CUBIT) that offers efficient real-time updates that scale with the number of CPU cores used and do not interfere with queries. Our design relies on three principles. First, we employ a horizontal bitwise representation of updated bits, which enables efficient atomic updates without locking entire bitvectors. Second, we propose a lightweight snapshotting mechanism that allows queries to run on separate snapshots and provides a wait-free progress guarantee. Third, we consolidate updates in a latch-free manner, providing a strong progress guarantee. Our evaluation shows that CUBIT offers 3--16× higher throughput and 3--220× lower latency than state-of-the-art updatable bitmap indexes. CUBIT's update-friendly nature widens the applicability of bitmap indexing. Experimenting with OLAP workloads with standard, batched updates shows that CUBIT overcomes the maintenance downtime and outperforms DuckDB by 1.2--2.7× on TPC-H. For HTAP workloads with real-time updates, CUBIT achieves 2--11× performance improvement over the state-of-the-art approaches. 
    more » « less
  3. Real-time data analysis applications increasingly rely on complex streaming computations over time-series data. We propose StreamQL, a language that facilitates the high-level specification of complex analyses over streaming time series. StreamQL is designed as an algebra of stream transformations and provides a collection of combinators for composing them. It integrates three language-based approaches for data stream processing: relational queries, dataflow composition, and temporal formalisms. The relational constructs are useful for specifying simple transformations, aggregations, and the partitioning of data into key-based groups or windows. The dataflow abstractions enable the modular description of a computation as a pipeline of stages or, more generally, as a directed graph of independent tasks. Finally, temporal constructs can be used to specify complex temporal patterns and time-varying computations. These constructs can be composed freely to describe complex streaming computations. We provide a formal denotational semantics for StreamQL using a class of monotone functions over streams. We have implemented StreamQL as a lightweight Java library, which we use to experimentally evaluate our approach. The experiments show that the throughput of our implementation is competitive compared to state-of-the-art streaming engines such as RxJava and Reactor. 
    more » « less
  4. null (Ed.)
    For compute-intensive iterative queries over a streaming graph, it is critical to evaluate the queries continuously and incrementally for best efficiency. However, the existing incremental graph processing requires a priori knowledge of the query (e.g., the source vertex of a vertex-specific query); otherwise, it has to fall back to the expensive full evaluation that starts from scratch. To alleviate this restriction, this work presents a principled solution to generalizing the incremental graph processing, such that queries, without their a priori knowledge, can also be evaluated incrementally. The solution centers around the concept of graph triangle inequalities, an idea inspired by the classical triangle inequality principle in the Euclidean space. Interestingly, similar principles can also be derived for many vertex-specific graph problems. These principles can help establish rigorous constraints between the evaluation of one graph query and the results of another, thus enabling reusing the latter to accelerate the former. Based on this finding, a novel streaming graph system, called Tripoline, is built which enables incremental evaluation of queries without their a priori knowledge. Built on top of a state-of-the-art shared-memory streaming graph engine (Aspen), Tripoline natively supports high-throughput low-cost graph updates. A systematic evaluation with a set of eight vertex-specific graph problems and four real-world large graphs confirms both the effectiveness of the proposed techniques and the efficiency of Tripoline. 
    more » « less
  5. Ranjit Jhala and Isil Dillig (Ed.)
    Many modern programming languages are shifting toward a functional style for collection interfaces such as sets, maps, and sequences. Functional interfaces offer many advantages, including being safe for parallelism and providing simple and lightweight snapshots. However, existing high-performance functional interfaces such as PAM, which are based on bal- anced purely-functional trees, incur large space overheads for large-scale data analysis due to storing every element in a separate node in a tree. This paper presents PaC-trees, a purely-functional data structure supporting functional interfaces for sets, maps, and sequences that provides a significant reduction in space over existing approaches. A PaC-tree is a balanced binary search tree which blocks the leaves and compresses the blocks us- ing arrays. We provide novel techniques for compressing and uncompressing the blocks which yield practical parallel functional algorithms for a broad set of operations on PaC- trees such as union, intersection, filter, reduction, and range queries which are both theoretically and practically efficient. Using PaC-trees we designed CPAM, a C++ library that im- plements the full functionality of PAM, while offering signifi- cant extra functionality for compression. CPAM consistently matches or outperforms PAM on a set of microbenchmarks on sets, maps, and sequences while using about a quarter of the space. On applications including inverted indices, 2D range queries, and 1D interval queries, CPAM is competitive with or faster than PAM, while using 2.1ś7.8x less space. For static and streaming graph processing, CPAM offers 1.6x faster batch updates while using 1.3ś2.6x less space than the state-of-the-art graph processing system Aspen. 
    more » « less