skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Desymmetrized Leaning Pillar[6]arene
Abstract In this work, a novel version of macrocyclic arenes, namely leaning pillar[6]arenes, was discovered and it can be considered as a tilted version of a pillar[6]arene with two hydroxy/alkoxy functionalities removed. Through a facile two‐step synthetic approaches, in conjunction with a diversity of post‐modification possibilities, a series of leaning pillar[6]arenes, with good cavity adaptability and enhanced guest‐binding capability, was synthesized, and their self‐assembly in single‐crystal states is presented. DFT calculations demonstrated that the lower rotational barrier of unsubstituted phenylene rings, the uneven electron density centered at the leaning phenyl rings, and the polarization effect along the edge generated by the hydrogen‐bond‐induced orientation of hydroxy groups greatly affected the host‐guest properties, and meanwhile provided an intuitive explanation for the pillar‐like and rigid structure of traditional pillar[6]arenes. Significantly, the crystal structure of cyclo‐oligomeric quinone was obtained by direct oxidation of leaning pillar[6]arenes.  more » « less
Award ID(s):
1654029
PAR ID:
10063003
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
31
ISSN:
1433-7851
Page Range / eLocation ID:
p. 9853-9858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report that the direct macrocyclization of naphthalene monomers bearing ethyl ester functional groups delivers prism[5]arene derivatives, which can be deprotected to yield water‐soluble prism[5]arenes (H1andH3).1H NMR spectroscopy showed that dicationic guests bind with the hydrophobic cores buried inside the anisotropic magnetically shielding cavity. Isothermal titration calorimetry measurements showed thatH1andH3are high‐affinity hosts in PBS‐buffered water with Kavalues exceeding 109 M−1for a select guest. The complexation events are driven by the non‐classical hydrophobic effect, CH⋅⋅⋅π interactions, and electrostatic interactions. HostH1displays somewhat higher affinity toward a common guest than pillar[6]arene bearing carboxylic acid functional groups but is significantly less potent than pillar[6]arene bearing sulfate groups.H1andH3should be considered alongside other high affinity hosts for a variety of chemical and biological applications. 
    more » « less
  2. Phenol based aryliodonium salts were prepared by the reaction of [hydroxy(tosyloxy)iodo]arenes with aryl silyl ethers in the presence of trifluoromethanesulfonic acid. Structures of several aryliodonium salts with the hydroxy group in the para -position of the phenyl ring were established by single crystal X-ray crystallography. Under basic conditions, 4-hydroxyphenyl(phenyl)iodonium salts form a dimeric hypervalent iodine( iii ) complex, oxyphenyl(phenyl)iodonium ylidic salt, the solid structure of which was confirmed by X-ray crystallography. Phenolic iodonium salts are potentially useful phenol transfer reagents in reactions with various anionic nucleophiles. 
    more » « less
  3. Abstract We report the synthesis and characterization of sulfated pillar[5]arene hosts (P5S2‐P5S10) that differ in the number of sulfate substituents. All fiveP5Snhosts display high solubility in water (73–131 mM) and do not undergo significant self‐association according to1H NMR dilution experiments. The x‐ray crystal structures ofP5S6,P5S6 ⋅ Me6HDA,P5S8 ⋅ Me6HDA, andP5S10 ⋅ Me6HDAreveal one intracavity molecule ofMe6HDAand several external molecules ofMe6HDAwhich form a network of close methonium ⋅ ⋅ ⋅ sulfate interactions. The thermodynamic parameters of complexation betweenP5Snand the panel of guests was measured by direct or competitive isothermal titration calorimetry. We find that the binding free energy toward a guest becomes more negative as the number of sulfate substituents increase. Conversely, the binding free energy of a specific sulfated pillar[5]arene toward a homologous series of guests becomes more negative as the number of NMe groups increases. The ability to tune the host ⋅ guest affinity by changing the number of sulfate substituents will be valuable in supramolecular polymers, separation materials, and latching applications. 
    more » « less
  4. Abstract We report the synthesis, X‐ray crystal structure, and molecular recognition properties of pillar[n]arene derivativeP[6]AS, which we refer to as Pillar[6]MaxQ along with analoguesP[5]ASandP[7]AStoward guests1–18. The ultratight binding affinity ofP[5]ASandP[6]AStoward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non‐covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents. 
    more » « less
  5. This manuscript describes a simple and effective method to cyclodehydrogenate arenes using liquid alkali metals. Direct reaction between molten potassium and arenes forms 6-membered rings and zigzag edged structures within polyarenes. The approach is extended to integration of pyridinic nitrogen and 5-membered rings to arene structures and synthesis of larger, open-shell nanographenes. 
    more » « less