This content will become publicly available on January 8, 2026
Molten Metal Synthesis of Nanographenes
This manuscript describes a simple and effective method to cyclodehydrogenate arenes using liquid alkali metals. Direct reaction between molten potassium and arenes forms 6-membered rings and zigzag edged structures within polyarenes. The approach is extended to integration of pyridinic nitrogen and 5-membered rings to arene structures and synthesis of larger, open-shell nanographenes.
more »
« less
- Award ID(s):
- 2203660
- PAR ID:
- 10638306
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 147
- Issue:
- 1
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 111 to 117
- Subject(s) / Keyword(s):
- Alkali metals Aromatic compounds Cyclization Hydrocarbons Potassium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In this work, a novel version of macrocyclic arenes, namely leaning pillar[6]arenes, was discovered and it can be considered as a tilted version of a pillar[6]arene with two hydroxy/alkoxy functionalities removed. Through a facile two‐step synthetic approaches, in conjunction with a diversity of post‐modification possibilities, a series of leaning pillar[6]arenes, with good cavity adaptability and enhanced guest‐binding capability, was synthesized, and their self‐assembly in single‐crystal states is presented. DFT calculations demonstrated that the lower rotational barrier of unsubstituted phenylene rings, the uneven electron density centered at the leaning phenyl rings, and the polarization effect along the edge generated by the hydrogen‐bond‐induced orientation of hydroxy groups greatly affected the host‐guest properties, and meanwhile provided an intuitive explanation for the pillar‐like and rigid structure of traditional pillar[6]arenes. Significantly, the crystal structure of cyclo‐oligomeric quinone was obtained by direct oxidation of leaning pillar[6]arenes.more » « less
-
Despite their widespread use, the mechanisms governing the synthesis of zeolite catalysts are still poorly understood. A notable example of this problem is the uncertainty surrounding the influence of synthesis conditions on the placement of Al atoms in the zeolite framework, which determines the active sites available for catalytic species. In this work, the role of the cis to trans isomer ratio of the OSDA N,N-dimethyl-3-5-dimethylpiperidinium on the energetics of 26 distinct Al pair distributions in SSZ-39 is examined both in the presence and absence of Na using density functional theory calculations. The initial orientation of the OSDA was found to have a significant impact on the final energies present, necessitating the screening of a large number of initial orientations with force field calculations and single point DFT calculations. Ground state energies were found to vary significantly with the ratio of cis to trans OSDAs with a Boltzmann distribution revealing the most likely Al pair distributions shift from sharing the same 8 membered rings to sharing the same double 6-membered rings to having no shared subunits as one increases the amount of cis OSDA present within the framework. The presence of Na was found to favor Al pair distributions where both Als occupied the same 6-membered ring. When an implicit solvent model was used to evaluate ground state energies the ideal Na sites shifted from 6-membered rings to empty SSZ-39 cages while OSDA positions and orientations remained largely the same. To provide insight on how kinetic factors may influence Al distributions, formation energies we calculated for connected double 6-membered rings. These formation energies revealed a preference for Al pairs to occupy the same 4-membered ring, which indicates kinetic and thermodynamic control may lead to different Al distributions in SSZ-39.more » « less
-
Abstract Low‐strain cyclic olefin monomers, including five‐membered, six‐membered, eight‐membered, and macrocyclic rings, have been recently exploited for the synthesis of depolymerizable polyolefins via ring‐opening metathesis polymerization (ROMP). Such polyolefins can undergo ring‐closing metathesis depolymerization (RCMD) to regenerate their original monomers. Nevertheless, the depolymerization behavior of polyolefins prepared by ROMP of seven‐membered cyclic olefins, an important class of low‐strain rings, still remains unexplored. In this study, we demonstrate the chemical recycling of polyheptenamers to cycloheptene under standard RCMD conditions. Highly efficient depolymerization of polyheptenamer was enabled by Grubbs' second‐generation catalyst in toluene. It was observed that the monomer yields increased when the depolymerization temperature increased and the starting polymer concentration was reduced. A near‐quantitative monomer regeneration (>96%) was achieved within 1 h under dilute conditions (20 mM of olefins) at 60°C. Moreover, polyheptenamer exhibited a decomposition temperature above 430°C, highlighting its potential as a new class of thermally stable and chemically recyclable polymer materials.more » « less
-
Abstract Oligomeric models of linear ladder silanes, siloxanes and siloxazanes with seven repeat units consisting of four-, six-, or eight-membered rings were designed and their conformations in chloroform were explored. The Low Mode–Monte Carlo conformational method was used to explore oligomeric flexibility on the OPLS-2005/GBSA(CHCl3) potential energy surface to obtain a set of low energy structures for each oligomer. These structures were then optimized using B3LYP/6-31G*/SCRF-PBF(CHCl3) calculations. The results indicate complex conformational dynamics with mostly non-planar, curved structures. Electron delocalization from the lone pair of electrons on N or O into empty 3d orbitals on Si was not observed.more » « less
An official website of the United States government
