Accurately reconstructing 3D hand poses is a pivotal element for numerous Human-Computer Interaction applications. In this work, we propose SonicHand, the first smartphone-based 3D hand pose reconstruction system using purely inaudible acoustic signals. SonicHand incorporates signal processing techniques and a deep learning framework to address a series of challenges. First, it encodes the topological information of the hand skeleton as prior knowledge and utilizes a deep learning model to realistically and smoothly reconstruct the hand poses. Second, the system employs adversarial training to enhance the generalization ability of our system to be deployed in a new environment or for a new user. Third, we adopt a hand tracking method based on channel impulse response estimation. It enables our system to handle the scenario where the hand performs gestures while moving arbitrarily as a whole. We conduct extensive experiments on a smartphone testbed to demonstrate the effectiveness and robustness of our system from various dimensions. The experiments involve 10 subjects performing up to 12 different hand gestures in three distinctive environments. When the phone is held in one of the user’s hands, the proposed system can track joints with an average error of 18.64 mm.
more »
« less
AIM: Acoustic Imaging on a Mobile
The popularity of smartphones has grown at an unprecedented rate, which makes smartphone based imaging especially appealing. In this paper, we develop a novel acoustic imaging system using only an off-the-shelf smartphone. It is an attractive alternative to camera based imaging under darkness and obstruction. Our system is based on Synthetic Aperture Radar (SAR). To image an object, a user moves a phone along a predefined trajectory to mimic a virtual sensor array. SAR based imaging poses several new challenges in our context, including strong self and background interference, deviation from the desired trajectory due to hand jitters, and severe speaker/microphone distortion. We address these challenges by developing a 2-stage interference cancellation scheme, a new algorithm to compensate trajectory errors, and an effective method to minimize the impact of signal distortion. We implement a proof- of-concept system on Samsung S7. Our results demonstrate the feasibility and effectiveness of acoustic imaging on a mobile.
more »
« less
- Award ID(s):
- 1718585
- PAR ID:
- 10063070
- Date Published:
- Journal Name:
- ACM MobiSys
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Acoustic ranging is a technique for estimating the distance between two objects using acoustic signals, which plays a critical role in many applications, such as motion tracking, gesture/activity recognition, and indoor localization. Although many ranging algorithms have been developed, their performance still degrades significantly under strong noise, interference and hardware limitations. To improve the robustness of the ranging system, in this paper we develop a Deep learning based Ranging system, called DeepRange. We first develop an effective mechanism to generate synthetic training data that captures noise, speaker/mic distortion, and interference in the signals and remove the need of collecting a large volume of training data. We then design a deep range neural network (DRNet) to estimate distance. Our design is inspired by signal processing that ultra-long convolution kernel sizes help to combat the noise and interference. We further apply an ensemble method to enhance the performance. Moreover, we analyze and visualize the network neurons and filters, and identify a few important findings that can be useful for improving the design of signal processing algorithms. Finally, we implement and evaluate DeepRangeusing 11 smartphones with different brands and models, 4 environments (i.e., a lab, a conference room, a corridor, and a cubic area), and 10 users. Our results show that DRNet significantly outperforms existing ranging algorithms.more » « less
-
Abstract Background Tympanometry is used as part of a battery of tests for screening of middle ear function and may help diagnose middle ear disorders, but remains available only on expensive test equipment. Methods We report a low-cost smartphone-based tympanometer system that consists of a lightweight and portable attachment to vary air pressure in the ear and measure middle ear function. The smartphone displays a tympanogram and reports peak acoustic admittance in realtime. Our programmable and open-source system operates at 226 Hz and was tested on 50 pediatric patient ears in an audiology clinic in parallel with a commercial tympanometer. Results Our study shows an average agreement of 86 ± 2% between the 100 tympanograms produced by the smartphone and commercial device when five pediatric audiologists classified them into five classes based on the Liden and Jerger classification. Conclusion Given the accessibility and prevalence of budget smartphones in developing countries, our open-source tool may help provide timely and affordable screening of middle ear disorders.more » « less
-
This paper proposes SquiggleMilli, a system that approximates traditional Synthetic Aperture Radar (SAR) imaging on mobile millimeter-wave (mmWave) devices. The system is capable of imaging through obstructions, such as clothing, and under low visibility conditions. Unlike traditional SAR that relies on mechanical controllers or rigid bodies, SquiggleMilli is based on the hand-held, fluidic motion of the mmWave device. It enables mmWave imaging in hand-held settings by re-thinking existing motion compensation, compressed sensing, and voxel segmentation. Since mmWave imaging suffers from poor resolution due to specularity and weak reflectivity, the reconstructed shapes could be imperceptible by machines and humans. To this end, SquiggleMilli designs a machine learning model to recover the high spatial frequencies in the object to reconstruct an accurate 2D shape and predict its 3D features and category. We have customized SquiggleMilli for security applications, but the model is adaptable to other applications with limited training samples. We implement SquiggleMilli on off-the-shelf components and demonstrate its performance improvement over the traditional SAR qualitatively and quantitatively.more » « less
-
In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight and unmapped environments, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to emulate antenna arrays in the air as a robot moves freely in 2D or 3D space. The small differences in the phase and amplitude of WiFi signals are thus processed with knowledge of a robots’ local displacements (often provided via inertial sensors) to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and 3D trajectories, as well as continuous mobility of both transmitting and receiving robots, while computing AOA profiles between them and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry that is based on the Cramer Rao Bound and antenna array theory. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to the full 3D space, and/or requires transmitting robots to be static during data acquisition periods. In fact, we find that allowing robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms. Our experimental results bolster our theoretical findings, demonstrating that 3D trajectories provide enhanced and consistent accuracy, with AOA error of less than 10 deg for 95% of trials. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor (Intel RealSense T265 tracking camera), for estimating the robots’ local displacements, and we provide theoretical as well as empirical results that show the impact of typical trajectory estimation errors on the measured AOA. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 square meter environment with occlusions.more » « less
An official website of the United States government

