Recent studies have leveraged the existence of network macroscopic fundamental diagrams (MFD) to develop regional control strategies for urban traffic networks. Existing MFD-based control strategies focus on vehicle movement within and across regions of an urban network and do not consider how freeway traffic can be controlled to improve overall traffic operations in mixed freeway and urban networks. The purpose of this study is to develop a coordinated traffic management scheme that simultaneously implements perimeter flow control on an urban network and variable speed limits (VSL) on a freeway to reduce total travel time in such a mixed network. By slowing down vehicles traveling along the freeway, VSL can effectively meter traffic exiting the freeway into the urban network. This can be particularly useful since freeways often have large storage capacities and vehicles accumulating on freeways might be less disruptive to overall system operations than on urban streets. VSL can also be used to change where freeway vehicles enter the urban network to benefit the entire system. The combined control strategy is implemented in a model predictive control framework with several realistic constraints, such as gradual reductions in freeway speed limit. Numerical tests suggest that the combined implementation of VSL and perimeter metering control can improve traffic operations compared with perimeter metering alone. 
                        more » 
                        « less   
                    
                            
                            A Unified Framework to Predict Movement
                        
                    
    
            In the current data-centered era, there are many highly diverse data sources that provide information about movement on networks, such as GPS trajectories, traffic flow measurements, farecard data, pedestrian cameras, bike-share data and even geo-social movement trajectories. The challenge identified in this vision paper is to create a unified framework for aggregating and analyzing such diverse and uncertain movement data on networks. This requires probabilistic models to capture flow/volume and movement probabilities on a network over time. Novel algorithms are required to train these models from datasets with varying levels of uncertainty. By combining information from different networks, immediate applications of such a unifying movement model include optimal site planning, map construction, traffic management, and emergency management. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10063110
- Date Published:
- Journal Name:
- International Symposium on Spatial and Temporal Databases
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper undertakes a detailed empirical study of traffic dynamics on a freeway. The results show the traffic dynamics that systematically determine the shape of the fundamental diagram, FD, can also violate the stationarity assumptions of both shockwave analysis and Lighthill, Whitham and Richard's models, thereby inhibiting the applicability of these classical macroscopic traffic flow theories. The outcome is challenging because there is no way to identify the problem using only the macroscopic detector data. The research examines conditions local to vehicle detector stations to establish the FD while the single vehicle passage method is used to analyze the composition of vehicles underlying the aggregate samples. Then, traffic states are correlated between successive stations to measure the actual signal velocities and show they are inconsistent with the classical theories. This analysis also revealed that conditions in one lane can induce signals in another lane. Rather than exhibiting a single signal passing a given point in time and space, the induced and intrinsic signals are superimposed on one another in the given lane. We suspect the subtle dynamics revealed in this research have gone unnoticed because they are far below the resolution of conventional traffic monitoring. The findings could have implications to other traffic flow models that rely on the FD, so care should be taken to assess if a given model is potentially sensitive to the non-stationary dynamics presented herein. The results have a direct impact on practice. Traffic flow theory is a critical input to many aspects of surface transportation, e.g., traffic management, traffic control, network design, vehicle routing, traveler information, and transportation planning all depend on models or simulation software that are based upon traffic flow theory. If the underlying traffic flow theory is flawed it puts the higher level applications at risk. So, the findings in this paper should lead to caution in accepting the predictions from traffic flow models and simulation software when the traffic exhibits a concave FD.more » « less
- 
            null (Ed.)Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management.more » « less
- 
            Urban transportation networks are vital for the economic and environmental well-being of cities and they are faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs) challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that control models of traffic lights directly based on extensive and continuous training data. Most of the times, the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets because it clusters data points incrementally and dynamically into a small set of representatives. The suggested method does not only enable better simulation and prediction of traffic patterns but also makes possible the real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically based on both real-time and historical traffic data. This approach is assessed under different traffic intensities, which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being compared with the traditional and the existing adaptive traffic management systems.more » « less
- 
            Throughout the past decades, many different versions of the widely used first-order Cell-Transmission Model (CTM) have been proposed for optimal traffic control. Highway traffic management techniques such as Ramp Metering (RM) are typically designed based on an optimization problem with nonlinear constraints originating in the flow-density relation of the Fundamental Diagram (FD). Most of the extended CTM versions are based on the trapezoidal approximation of the flow-density relation of the Fundamental Diagram (FD) in an attempt to simplify the optimization problem. However, this relation is naturally nonlinear, and crude approximations can greatly impact the efficiency of the optimization solution. In this study, we propose a class of extended CTMs that are based on piecewise affine approximations of the flow-density relation such that (a) the integrated squared error with respect to the true relation is greatly reduced in comparison to the trapezoidal approximation, and (b) the optimization problem remains tractable for real-time application of ramp metering optimal controllers. A two-step identification method is used to approximate the FD with piecewise affine functions resulting in what we refer to as PWA-CTMs. The proposed models are evaluated by the performance of the optimal ramp metering controllers, e.g. using the widely used PI-ALINEA approach, in complex highway traffic networks. Simulation results show that the optimization problems based on the PWA-CTMs require less computation time compared to other CTM extensions while achieving higher accuracy of the flow and density evolution. Hence, the proposed PWA-CTMs constitute one of the best approximation approaches for first-order traffic flow models that can be used in more general and challenging modeling and control applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    