skip to main content


Title: Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA
Cerebellar-prefrontal connectivity has been recognized as important for behaviors ranging from motor coordination to cognition. Many of these behaviors are known to involve excitatory or inhibitory modulations from the prefrontal cortex. We used cerebellar transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) to probe cerebellar-evoked electrical activity in prefrontal cortical areas and used magnetic resonance spectroscopy (MRS) measures of prefrontal GABA and glutamate levels to determine if they are correlated with those potentials. Cerebellar-evoked bilateral prefrontal synchrony in the theta to gamma frequency range showed patterns that reflect strong GABAergic inhibitory function (r = − 0.66, p = 0.002). Stimulation of prefrontal areas evoked bilateral prefrontal synchrony in the theta to low beta frequency range that reflected, conversely, glutamatergic excitatory function (r = 0.66, p = 0.002) and GABAergic inhibitory function (r = − 0.65, p = 0.002). Cerebellar-evoked prefrontal synchronization had opposite associationswith cognition and motor coordination: it was positively associated with workingmemory performance (r =0.57, p = 0.008) but negatively associated with coordinated motor function as measured by rapid finger tapping (r = − 0.59, p = 0.006). The results suggest a relationship between regional GABA levels and interregional effects on synchrony. Stronger cerebellar-evoked prefrontal synchrony was associated with better working memory but surprisingly worse motor coordination, which suggests competing effects for motor activity and cognition. The data supports the use of a TMS-EEG-MRS approach to study the neurochemical basis of large-scale oscillations modulated by the cerebellar-prefrontal connectivity.  more » « less
Award ID(s):
1631820
NSF-PAR ID:
10063434
Author(s) / Creator(s):
Date Published:
Journal Name:
Cerebellum
ISSN:
1473-4222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The limited information about how descending inputs from the brain and sensory inputs from the periphery use spinal cord interneurons (INs) is a major barrier to understanding how these inputs may contribute to motor functions under normal and pathologic conditions. Commissural interneurons (CINs) are a heterogeneous population of spinal INs that has been implicated in crossed motor responses and bilateral motor coordination (ability to use the right and left side of the body in a coordinated manner) and, therefore, are likely involved in many types of movement (e.g., dynamic posture stabilization, jumping, kicking, walking). In this study, we incorporate mouse genetics, anatomy, electrophysiology, and single-cell calcium imaging to investigate how a subset of CINs, those with descending axons called dCINs, are recruited by descending reticulospinal and segmental sensory signals independently and in combination. We focus on two groups of dCINs set apart by their principal neurotransmitter (glutamate and GABA) and identified as VGluT2+ dCINs and GAD2+ dCINs. We show that VGluT2+ and GAD2+ dCINs are both extensively recruited by reticulospinal and sensory input alone but that VGluT2+ and GAD2+ dCINs integrate these inputs differently. Critically, we find that when recruitment depends on the combined action of reticulospinal and sensory inputs (subthreshold inputs), VGluT2+ dCINs, but not GAD2+ dCINs, are recruited. This difference in the integrative capacity of VGluT2+ and GAD2+ dCINs represents a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.

    SIGNIFICANCE STATEMENTThe way supraspinal and peripheral sensory inputs use spinal cord interneurons is fundamental to defining how motor functions are supported both in health and disease. This study, which focuses on dCINs, a heterogeneous population of spinal interneurons critical for crossed motor responses and bilateral motor coordination, shows that both glutamatergic (excitatory) and GABAergic (inhibitory) dCINs can be recruited by supraspinal (reticulospinal) or peripheral sensory inputs. Additionally, the study demonstrates that in conditions where the recruitment of dCINs depends on the combined action of reticulospinal and sensory inputs, only excitatory dCINs are recruited. The study uncovers a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.

     
    more » « less
  2. Abstract

    We combined magnetoencephalography (MEG), 7 T proton magnetic resonance spectroscopy (MRS), and 7 T fMRI during performance of a task in a group of 23 first episode psychosis (FEP) patients and 26 matched healthy controls (HC). We recorded both the auditory evoked response to 40 Hz tone clicks and the resting state in MEG. Neurometabolite levels were obtained from the anterior cingulate cortex (ACC). The fMRI BOLD response was obtained during the Stroop inhibitory control task. FEP showed a significant increase in resting state low frequency theta activity (p < 0.05; Cohend= 0.69), but no significant difference in the 40 Hz auditory evoked response compared to HC. An across-groups whole brain analysis of the fMRI BOLD response identified eight regions that were significantly activated during task performance (p < 0.01, FDR-corrected); the mean signal extracted from those regions was significantly different between the groups (p = 0.0006;d = 1.19). In the combined FEP and HC group, there was a significant correlation between the BOLD signal during task performance and MEG resting state low frequency activity (p < 0.05). In FEP, we report significant alteration in resting state low frequency MEG activity, but no alterations in auditory evoked gamma band response, suggesting that the former is a more robust biomarker of early psychosis. There were no correlations between gamma oscillations and GABA levels in either HC or FEP. Finally, in this study, each of the three imaging modalities differentiated FEP from HC; fMRI with good and MEG and MRS with moderate effect size.

     
    more » « less
  3. Neurons are remarkably polarized structures: dendrites spread and branch to receive synaptic inputs while a single axon extends and transmits action potentials (APs) to downstream targets. Neuronal polarity is maintained by the axon initial segment (AIS), a region between the soma and axon proper that is also the site of action potential (AP) generation. This polarization between dendrites and axons extends to inhibitory neurotransmission. In adulthood, the neurotransmitter GABA hyperpolarizes dendrites but instead depolarizes axons. These differences in function collide at the AIS. Multiple studies have shown that GABAergic signaling in this region can share properties of either the mature axon or mature dendrite, and that these properties evolve over a protracted period encompassing periadolescent development. Here, we explored how developmental changes in GABAergic signaling affect AP initiation. We show that GABA at the axon initial segment inhibits action potential initiation in layer (L)2/3 pyramidal neurons in prefrontal cortex from mice of either sex across GABA reversal potentials observed in periadolescence. These actions occur largely through current shunts generated by GABAAreceptors and changes in voltage-gated channel properties that affected the number of channels that could be recruited for AP electrogenesis. These results suggest that GABAergic neurons targeting the axon initial segment provide an inhibitory “veto” across the range of GABA polarity observed in normal adolescent development, regardless of GABAergic synapse reversal potential.

    Significance StatementGABA receptors are a major class of neurotransmitter receptors in the brain. Typically, GABA receptors inhibit neurons by allowing influx of negatively charged chloride ions into the cell. However, there are cases where local chloride concentrations promote chloride efflux through GABA receptors. Such conditions exist early in development in neocortical pyramidal cell axon initial segments (AISs), where action potentials (APs) initiate. Here, we examined how chloride efflux in early development interacts with mechanisms that support action potential initiation. We find that this efflux, despite moving membrane potential closer to action potential threshold, is nevertheless inhibitory. Thus, GABA at the axon initial segment is likely to be inhibitory for action potential initiation independent of whether chloride flows out or into neurons via these receptors.

     
    more » « less
  4. Manto, Mario (Ed.)
    Background Cerebellar electrical stimulation has shown promise in improving motor recovery post-stroke in both rodent and human studies. Past studies have used motor evoked potentials (MEPs) to evaluate how cerebellar stimulation modulates ongoing activity in the cortex, but the underlying mechanisms are incompletely understood. Here we used invasive electrophysiological recordings from the intact and stroke-injured rodent primary motor cortex (M1) to assess how epidural cerebellar stimulation modulates neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics. Methods We recorded single unit spiking and local field potentials (LFPs) in both the intact and acutely stroke-injured M1 contralateral to the stimulated cerebellum in adult Long-Evans rats under anesthesia. We analyzed changes in the firing rates of single units, the extent of synchronous spiking and power spectral density (PSD) changes in LFPs during and post-stimulation. Results Our results show that post-stimulation, the firing rates of a majority of M1 neurons changed significantly with respect to their baseline rates. These firing rate changes were diverse in character, as the firing rate of some neurons increased while others decreased. Additionally, these changes started to set in during stimulation. Furthermore, cross-correlation analysis showed a significant increase in coincident firing amongst neuronal pairs. Interestingly, this increase in synchrony was unrelated to the direction of firing rate change. We also found that neuronal ensembles derived through principal component analysis were more active post-stimulation. Lastly, these changes occurred without a significant change in the overall spectral power of LFPs post-stimulation. Conclusions Our results show that cerebellar stimulation caused significant, long-lasting changes in the activity patterns of M1 neurons by altering firing rates, boosting neural synchrony and increasing neuronal assemblies’ activation strength. Our study provides evidence that cerebellar stimulation can directly modulate cortical dynamics. Since these results are present in the perilesional cortex, our data might also help explain the facilitatory effects of cerebellar stimulation post-stroke. 
    more » « less
  5. Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABA A α 1 -receptor subunits and up-regulation of α 2/3 -receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients. Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET. 
    more » « less