skip to main content


Title: MeDNN: A distributed mobile system with enhanced partition and deployment for large-scale DNNs
Deep Neural Networks (DNNs) are pervasively used in a significant number of applications and platforms. To enhance the execution efficiency of large-scale DNNs, previous attempts focus mainly on client-server paradigms, relying on powerful external infrastructure, or model compression, with complicated pre-processing phases. Though effective, these methods overlook the optimization of DNNs on distributed mobile devices. In this work, we design and implement MeDNN, a local distributed mobile computing system with enhanced partitioning and deployment tailored for large-scale DNNs. In MeDNN, we first propose Greedy Two Dimensional Partition (GTDP), which can adaptively partition DNN models onto several mobile devices w.r.t. individual resource constraints. We also propose Structured Model Compact Deployment (SMCD), a mobile-friendly compression scheme which utilizes a structured sparsity pruning technique to further accelerate DNN execution. Experimental results show that, GTDP can accelerate the original DNN execution time by 1.86 – 2.44⇥ with 2 – 4 worker nodes. By utilizing SMCD, 26.5% of additional computing time and 14.2% of extra communication time are saved, on average, with negligible effect on the model accuracy.  more » « less
Award ID(s):
1717657 1725456
NSF-PAR ID:
10063490
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE/ACM International Conference on Computer Aided Design
Page Range / eLocation ID:
751 to 756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Efficient deployment of Deep Neural Networks (DNNs) on edge devices (i.e., FPGAs and mobile platforms) is very challenging, especially under a recent witness of the increasing DNN model size and complexity. Model compression strategies, including weight quantization and pruning, are widely recognized as effective approaches to significantly reduce computation and memory intensities, and have been implemented in many DNNs on edge devices. However, most state-of-the-art works focus on ad-hoc optimizations, and there lacks a thorough study to comprehensively reveal the potentials and constraints of different edge devices when considering different compression strategies. In this paper, we qualitatively and quantitatively compare the energy efficiency of FPGA-based and mobile-based DNN executions using mobile GPU and provide a detailed analysis. Based on the observations obtained from the analysis, we propose a unified optimization framework using block-based pruning to reduce the weight storage and accelerate the inference speed on mobile devices and FPGAs, achieving high hardware performance and energy-efficiency gain while maintaining accuracy. 
    more » « less
  2. It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices because even the powerful modern mobile devices are considered “resource-constrained” when executing large-scale DNNs. It necessitates the sparse model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning. We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative FPGA inference acceleration framework for RNNs), and achieve up to 14.08× speedup. 
    more » « less
  3. The high computation and memory storage of large deep neural networks (DNNs) models pose intensive challenges to the conventional Von-Neumann architecture, incurring substantial data movements in the memory hierarchy. The memristor crossbar array has emerged as a promising solution to mitigate the challenges and enable low-power acceleration of DNNs. Memristor-based weight pruning and weight quantization have been separately investigated and proven effectiveness in reducing area and power consumption compared to the original DNN model. However, there has been no systematic investigation of memristor-based neuromorphic computing (NC) systems considering both weight pruning and weight quantization. In this paper, we propose an unified and systematic memristor-based framework considering both structured weight pruning and weight quantization by incorporating alternating direction method of multipliers (ADMM) into DNNs training. We consider hardware constraints such as crossbar blocks pruning, conductance range, and mismatch between weight value and real devices, to achieve high accuracy and low power and small area footprint. Our framework is mainly integrated by three steps, i.e., memristor- based ADMM regularized optimization, masked mapping and retraining. Experimental results show that our proposed frame- work achieves 29.81× (20.88×) weight compression ratio, with 98.38% (96.96%) and 98.29% (97.47%) power and area reduction on VGG-16 (ResNet-18) network where only have 0.5% (0.76%) accuracy loss, compared to the original DNN models. We share our models at anonymous link http://bit.ly/2Jp5LHJ . 
    more » « less
  4. Deep neural network (DNN) accelerators as an example of domain-specific architecture have demonstrated great success in DNN inference. However, the architecture acceleration for equally important DNN training has not yet been fully studied. With data forward, error backward and gradient calculation, DNN training is a more complicated process with higher computation and communication intensity. Because the recent research demonstrates a diminishing specialization return, namely, “accelerator wall”, we believe that a promising approach is to explore coarse-grained parallelism among multiple performance-bounded accelerators to support DNN training. Distributing computations on multiple heterogeneous accelerators to achieve high throughput and balanced execution, however, remaining challenging. We present ACCPAR, a principled and systematic method of determining the tensor partition among heterogeneous accelerator arrays. Compared to prior empirical or unsystematic methods, ACCPAR considers the complete tensor partition space and can reveal previously unknown new parallelism configurations. ACCPAR optimizes the performance based on a cost model that takes into account both computation and communication costs of a heterogeneous execution environment. Hence, our method can avoid the drawbacks of existing approaches that use communication as a proxy of the performance. The enhanced flexibility of tensor partitioning in ACCPAR allows the flexible ratio of computations to be distributed among accelerators with different performances. The proposed search algorithm is also applicable to the emerging multi-path patterns in modern DNNs such as ResNet. We simulate ACCPAR on a heterogeneous accelerator array composed of both TPU-v2 and TPU-v3 accelerators for the training of large-scale DNN models such as Alexnet, Vgg series and Resnet series. The average performance improvements of the state-of-the-art “one weird trick” (OWT) and HYPAR, and ACCPAR, normalized to the baseline data parallelism scheme where each accelerator replicates the model and processes different input data in parallel, are 2.98×, 3.78×, and 6.30×, respectively. 
    more » « less
  5. null (Ed.)
    With the success of Deep Neural Networks (DNN), many recent works have been focusing on developing hardware accelerator for power and resource-limited system via model compression techniques, such as quantization, pruning, low-rank approximation and etc. However, almost all existing compressed DNNs are fixed after deployment, which lacks run-time adaptive structure to adapt to its dynamic hardware resource allocation, power budget, throughput requirement, as well as dynamic workload. As the countermeasure, to construct a novel run-time dynamic DNN structure, we propose a novel DNN sub-network sampling method via non-uniform channel selection for subnets generation. Thus, user can trade off between power, speed, computing load and accuracy on-the-fly after the deployment, depending on the dynamic requirements or specifications of the given system. We verify the proposed model on both CIFAR-10 and ImageNet dataset using ResNets, which outperforms the same sub-nets trained individually and other related works. It shows that, our method can achieve latency trade-off among 13.4, 24.6, 41.3, 62.1(ms) and 30.5, 38.7, 51, 65.4(ms) for GPU with 128 batch-size and CPU respectively on ImageNet using ResNet18. 
    more » « less