skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ReGAN: A pipelined ReRAM-based accelerator for generative adversarial networks
Generative Adversarial Networks (GANs) have recently drawn tremendous attention in many artificial intelligence (AI) applications including computer vision, speech recognition, and natural language processing. While GANs deliver state-of-the-art performance on these AI tasks, it comes at the cost of high computational complexity. Although recent progress demonstrated the promise of using ReRMA-based Process-In-Memory for acceleration of convolutional neural networks (CNNs) with low energy cost, the unique training process required by GANs makes them difficult to run on existing neural network acceleration platforms: two competing networks are simultaneously co-trained in GANs, and hence, significantly increasing the need of memory and computation resources. In this work, we propose ReGAN – a novel ReRAM-based Process-In-Memory accelerator that can efficiently reduce off-chip memory accesses. Moreover, ReGAN greatly increases system throughput by pipelining the layer-wise computation. Two techniques, namely, Spatial Parallelism and Computation Sharing are particularly proposed to further enhance training efficiency of GANs. Our experimental results show that ReGAN can achieve 240X performance speedup compared to GPU platform averagely, with an average energy saving of 94X.  more » « less
Award ID(s):
1725456
PAR ID:
10063496
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Asia and South Pacific Design Automation Conference (ASP-DAC)
Page Range / eLocation ID:
178 to 183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ending of Moore’s Law makes domain-specific architecture as the future of computing. The most representative is the emergence of various deep learning accelerators. Among the proposed solutions, resistive random access memory (ReRAM) based process-inmemory (PIM) architecture is anticipated as a promising candidate because ReRAM has the capability of both data storage and in-situ computation. However, we found that existing solutions are unable to efficiently support the computational needs required by the training of unsupervised generative adversarial networks (GANs), due to the lack of the following two features: 1) Computation efficiency: GAN utilizes a new operator, called transposed convolution. It inserts massive zeros in its input before a convolution operation, resulting in significant resource under-utilization; 2) Data traffic: The data intensive training process of GANs often incurs structural heavy data traffic as well as frequent massive data swaps. Our research follows the PIM strategy by leveraging the energy-efficiency of ReRAM arrays for vector-matrix multiplication to enhance the performance and energy efficiency. Specifically, we propose a novel computation deformation technique that can skip zero-insertions in transposed convolution for computation efficiency improvement. Moreover, we explore an efficient pipelined training procedure to reduce on-chip memory access. The implementation of related circuits and architecture is also discussed. At the end, we present our perspective on the future trend and opportunities of deep learning accelerators. 
    more » « less
  2. The ending of Moore’s Law makes domain-specific architecture as the future of computing. The most representative is the emergence of various deep learning accelerators. Among the proposed solutions, resistive random access memory (ReRAM) based process-inmemory (PIM) architecture is anticipated as a promising candidate because ReRAM has the capability of both data storage and in-situ computation. However, we found that existing solutions are unable to efficiently support the computational needs required by the training of unsupervised generative adversarial networks (GANs), due to the lack of the following two features: 1) Computation efficiency: GAN utilizes a new operator, called transposed convolution. It inserts massive zeros in its input before a convolution operation, resulting in significant resource under-utilization; 2) Data traffic: The data intensive training process of GANs often incurs structural heavy data traffic as well as frequent massive data swaps. Our research follows the PIM strategy by leveraging the energy-efficiency of ReRAM arrays for vector-matrix multiplication to enhance the performance and energy efficiency. Specifically, we propose a novel computation deformation technique that can skip zero-insertions in transposed convolution for computation efficiency improvement. Moreover, we explore an efficient pipelined training procedure to reduce on-chip memory access. The implementation of related circuits and architecture is also discussed. At the end, we present our perspective on the future trend and opportunities of deep learning accelerators. 
    more » « less
  3. Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive analytics on graph-structured data. Hence, they have become very popular in diverse real-world applications. However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory- and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth. Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been proposed as suitable candidates for accelerating AI applications at the edge, including GNN training. However, ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low performance when they are used for GNN training in real-world scenarios with large graphs. In this work, we propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC) to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces the amount of redundant information in input graph(s) to speed up the overall training process, improves the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast, energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demonstrate that using this learning for data pruning framework, we can accelerate GNN training and improve the reliability of ReRAM-based PIM architectures by up to 1.6×, and reduce the overall training cost by 100× compared to state-of-the-art data pruning techniques. 
    more » « less
  4. Deep neural networks (DNNs) have emerged as the most powerful machine learning technique in numerous artificial intelligent applications. However, the large sizes of DNNs make themselves both computation and memory intensive, thereby limiting the hardware performance of dedicated DNN accelerators. In this paper, we propose a holistic framework for energy-efficient high-performance highly-compressed DNN hardware design. First, we propose block-circulant matrix-based DNN training and inference schemes, which theoretically guarantee Big-O complexity reduction in both computational cost (from O(n2) to O(n log n)) and storage requirement (from O(n2) to O(n)) of DNNs. Second, we dedicatedly optimize the hardware architecture, especially on the key fast Fourier transform (FFT) module, to improve the overall performance in terms of energy efficiency, computation performance and resource cost. Third, we propose a design flow to perform hardware-software co-optimization with the purpose of achieving good balance between test accuracy and hardware performance of DNNs. Based on the proposed design flow, two block-circulant matrix-based DNNs on two different datasets are implemented and evaluated on FPGA. The fixed-point quantization and the proposed block-circulant matrix-based inference scheme enables the network to achieve as high as 3.5 TOPS computation performance and 3.69 TOPS/W energy efficiency while the memory is saved by 108X ~ 116X with negligible accuracy degradation. 
    more » « less
  5. Deconvolution is a key component in contemporary neural networks, especially generative adversarial networks (GANs) and fully convolutional networks (FCNs). Due to extra operations of deconvolution compared to convolution, considerable degradation of performance as well as energy efficiency is incurred when implementing deconvolution on the existing resistive random access memory (ReRAM)-based processing-in-memory (PIM) accelerators. In this work, we propose a ReRAM-based accelerator design, RED, for providing high-performance and low-energy deconvolution. We analyze the deconvolution execution on the existing ReRAM-based PIMs and utilize its interior computation pattern for design optimization. RED includes two major contributions: pixel-wise mapping scheme and zero-skipping data flow. Pixel-wise mapping scheme removes the zero insertion and performs convolutions over several ReRAM arrays and thus enables parallel computations with non-zero inputs. Zero-skipping data flow, assisted with customized input buffers design, enhances the computation parallelism and input data reuse. In evaluation, we compare RED against the existing ReRAM-based PIMs and CMOS-based counterpart with a variety of GAN and FCN models, each of which contains multiple deconvolution layers. The experimental results show that RED achieves a 4.0×-56.16× speedup and a 1.05×-18.17× energy efficiency improvement over previous related accelerator designs. 
    more » « less