—Consider a linear code defined as a mapping between vector spaces of dimensions k and n. Let β∗ denote the minimal (relative) weight among all images of input vectors of full Hamming weight k. Operationally, β∗ characterizes the threshold for adversarial (erasure) noise beyond which decoder is guaranteed to produce estimate of k-input with 100% symbol error rate (SER). This paper studies the relation between β∗ and δ, the minimum distance of the code, which gives the threshold for 0% SER. An optimal tradeoff between β∗ and δ is obtained (over large alphabets) and all linear codes achieving β∗ = 1 are classified: they are repetition-like. More generally, a design criteria is proposed for codes with favorable graceful degradation properties. As an example, it is shown that in an overdetermined system of n homogeneous linear equations in k variables (over a field) it is always possible to satisfy some k − 1 equations with non-zero assignments to every unknown, provided that any subset of k equations is linearly independent. This statement is true if and only if n ≥ 2k − 1.
more »
« less
Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels
Consider a binary linear code of length N, minimum distance dmin, transmission over the binary erasure channel with parameter 0 < < 1 or the binary symmetric channel with parameter 0 < < 1 2 , and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions “quickly” from δ to 1−δ for any δ > 0 if the minimum distance is large. In particular the width of the transition is of order O(1/ √ dmin). We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as Θ(1/N 1 2 −κ ), for any κ > 0, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since Θ(1/N 1 2 ) is the smallest transition possible for any code, we speak of “almost” optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma.
more »
« less
- PAR ID:
- 10063530
- Date Published:
- Journal Name:
- 2018 IEEE Int. Symp. Inf. Theory (ISIT)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-ε and rate Ω(ε 2 ) (where an upper bound of O(ε 2 log(1/ε)) is known). Ta-Shma [STOC 2017] gave an explicit construction of ε-balanced binary codes, where any two distinct codewords are at a distance between 1/2-ε/2 and 1/2+ε/2, achieving a near optimal rate of Ω(ε 2+β ), where β→ 0 as ε→ 0. We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for ε-balanced codes with block length N and rate Ω(ε 2+β ) in this family: -For all , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N Oε,β(1) . -For any fixed constant β independent of ε, there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (log(1/ε)) O(1) ·N Oβ(1) . -For any , there are explicit ε-balanced codes with rate Ω(ε 2+β ) which can be list decoded up to error 1/2-ε ' in time N Oε,ε' ,β(1), where ε ' ,β→ 0 as ε→ 0. The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in ε. Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction.more » « less
-
Polynomial approximations for e−x and ex have applications to the design of algorithms for many problems, and our degree bounds show both the power and limitations of these algorithms. We focus in particular on the Batch Gaussian Kernel Density Estimation problem for n sample points in Θ(logn) dimensions with error δ=n−Θ(1). We show that the running time one can achieve depends on the square of the diameter of the point set, B, with a transition at B=Θ(logn) mirroring the corresponding transition in dB;δ(e−x): - When B=o(logn), we give the first algorithm running in time n1+o(1). - When B=κlogn for a small constant κ>0, we give an algorithm running in time n1+O(loglogκ−1/logκ−1). The loglogκ−1/logκ−1 term in the exponent comes from analyzing the behavior of the leading constant in our computation of dB;δ(e−x). - When B=ω(logn), we show that time n2−o(1) is necessary assuming SETH.more » « less
-
Braverman, Mark (Ed.)A longstanding open problem in coding theory is to determine the best (asymptotic) rate R₂(δ) of binary codes with minimum constant (relative) distance δ. An existential lower bound was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Delsarte’s linear programs. To date these results remain the best known lower and upper bounds on R₂(δ) with no improvement even for the important class of linear codes. Asymptotically, these bounds differ by an exponential factor in the blocklength. In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the true size A^{Lin}₂(n,d) of an optimum linear binary code (in fact, over any finite field) of a given blocklength n and distance d. This hierarchy has several notable features: 1) It is a natural generalization of the Delsarte LPs used in the first MRRW bound. 2) It is a hierarchy of linear programs rather than semi-definite programs potentially making it more amenable to theoretical analysis. 3) It is complete in the sense that the optimum code size can be retrieved from level O(n²). 4) It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the question of how to cut Delsarte’s LP polytopes to approximate the true size of linear codes. We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams inequalities to a suitable "higher-order" version taking into account interactions of 𝓁 words. Our method also generalizes to translation schemes under mild assumptions.more » « less
An official website of the United States government

