skip to main content


Title: Unique Decoding of Explicit -balanced Codes Near the Gilbert-Varshamov Bound
The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-ε and rate Ω(ε 2 ) (where an upper bound of O(ε 2 log(1/ε)) is known). Ta-Shma [STOC 2017] gave an explicit construction of ε-balanced binary codes, where any two distinct codewords are at a distance between 1/2-ε/2 and 1/2+ε/2, achieving a near optimal rate of Ω(ε 2+β ), where β→ 0 as ε→ 0. We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for ε-balanced codes with block length N and rate Ω(ε 2+β ) in this family: -For all , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N Oε,β(1) . -For any fixed constant β independent of ε, there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (log(1/ε)) O(1) ·N Oβ(1) . -For any , there are explicit ε-balanced codes with rate Ω(ε 2+β ) which can be list decoded up to error 1/2-ε ' in time N Oε,ε' ,β(1), where ε ' ,β→ 0 as ε→ 0. The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in ε. Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction.  more » « less
Award ID(s):
1816372
NSF-PAR ID:
10298439
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
Page Range / eLocation ID:
434 to 445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Gilbert–Varshamov bound non-constructively establishes the existence of binary codes of distance 1/2−є/2 and rate Ω(є2). In a breakthrough result, Ta-Shma [STOC 2017] constructed the first explicit family of nearly optimal binary codes with distance 1/2−є/2 and rate Ω(є2+α), where α → 0 as є → 0. Moreover, the codes in Ta-Shma’s construction are є-balanced, where the distance between distinct codewords is not only bounded from below by 1/2−є/2, but also from above by 1/2+є/2. Polynomial time decoding algorithms for (a slight modification of) Ta-Shma’s codes appeared in [FOCS 2020], and were based on the Sum-of-Squares (SoS) semidefinite programming hierarchy. The running times for these algorithms were of the form NOα(1) for unique decoding, and NOє,α(1) for the setting of “gentle list decoding”, with large exponents of N even when α is a fixed constant. We derive new algorithms for both these tasks, running in time Õє(N). Our algorithms also apply to the general setting of decoding direct-sum codes. Our algorithms follow from new structural and algorithmic results for collections of k-tuples (ordered hypergraphs) possessing a “structured expansion” property, which we call splittability. This property was previously identified and used in the analysis of SoS-based decoding and constraint satisfaction algorithms, and is also known to be satisfied by Ta-Shma’s code construction. We obtain a new weak regularity decomposition for (possibly sparse) splittable collections W ⊆ [n]k, similar to the regularity decomposition for dense structures by Frieze and Kannan [FOCS 1996]. These decompositions are also computable in near-linear time Õ(|W |), and form a key component of our algorithmic results. 
    more » « less
  2. We introduce fast-decodable indexing schemes for edit distance which can be used to speed up edit distance computations to near-linear time if one of the strings is indexed by an indexing string I. In particular, for every length n and every ε >0, one can in near linear time construct a string I ∈ Σ′n with |Σ′| = Oε(1), such that, indexing any string S ∈ Σn, symbol-by-symbol, with I results in a string S′ ∈ Σ″n where Σ″ = Σ × Σ′ for which edit distance computations are easy, i.e., one can compute a (1+ε)-approximation of the edit distance between S′ and any other string in O(n (log n)) time. Our indexing schemes can be used to improve the decoding complexity of state-of-the-art error correcting codes for insertions and deletions. In particular, they lead to near-linear time decoding algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi; STOC ‘17] and faster decoding algorithms for list-decodable insertion-deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP ‘18]. Interestingly, the latter codes are a crucial ingredient in the construction of fast-decodable indexing schemes. 
    more » « less
  3. Braverman, Mark (Ed.)
    For an abelian group H acting on the set [𝓁], an (H,𝓁)-lift of a graph G₀ is a graph obtained by replacing each vertex by 𝓁 copies, and each edge by a matching corresponding to the action of an element of H. Expanding graphs obtained via abelian lifts, form a key ingredient in the recent breakthrough constructions of quantum LDPC codes, (implicitly) in the fiber bundle codes by Hastings, Haah and O'Donnell [STOC 2021] achieving distance Ω̃(N^{3/5}), and in those by Panteleev and Kalachev [IEEE Trans. Inf. Theory 2021] of distance Ω(N/log(N)). However, both these constructions are non-explicit. In particular, the latter relies on a randomized construction of expander graphs via abelian lifts by Agarwal et al. [SIAM J. Discrete Math 2019]. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group H ⩽ Sym(𝓁), constant degree d ≥ 3 and ε > 0, we construct explicit d-regular expander graphs G obtained from an (H,𝓁)-lift of a (suitable) base n-vertex expander G₀ with the following parameters: ii) λ(G) ≤ 2√{d-1} + ε, for any lift size 𝓁 ≤ 2^{n^{δ}} where δ = δ(d,ε), iii) λ(G) ≤ ε ⋅ d, for any lift size 𝓁 ≤ 2^{n^{δ₀}} for a fixed δ₀ > 0, when d ≥ d₀(ε), or iv) λ(G) ≤ Õ(√d), for lift size "exactly" 𝓁 = 2^{Θ(n)}. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing" depth-first search traversals. Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion. 
    more » « less
  4. List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance. 
    more » « less
  5. Consider a binary linear code of length N, minimum distance dmin, transmission over the binary erasure channel with parameter 0 <  < 1 or the binary symmetric channel with parameter 0 <  < 1 2 , and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions “quickly” from δ to 1−δ for any δ > 0 if the minimum distance is large. In particular the width of the transition is of order O(1/ √ dmin). We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as Θ(1/N 1 2 −κ ), for any κ > 0, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since Θ(1/N 1 2 ) is the smallest transition possible for any code, we speak of “almost” optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma. 
    more » « less