skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unique Decoding of Explicit -balanced Codes Near the Gilbert-Varshamov Bound
The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-ε and rate Ω(ε 2 ) (where an upper bound of O(ε 2 log(1/ε)) is known). Ta-Shma [STOC 2017] gave an explicit construction of ε-balanced binary codes, where any two distinct codewords are at a distance between 1/2-ε/2 and 1/2+ε/2, achieving a near optimal rate of Ω(ε 2+β ), where β→ 0 as ε→ 0. We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for ε-balanced codes with block length N and rate Ω(ε 2+β ) in this family: -For all , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N Oε,β(1) . -For any fixed constant β independent of ε, there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (log(1/ε)) O(1) ·N Oβ(1) . -For any , there are explicit ε-balanced codes with rate Ω(ε 2+β ) which can be list decoded up to error 1/2-ε ' in time N Oε,ε' ,β(1), where ε ' ,β→ 0 as ε→ 0. The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in ε. Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction.  more » « less
Award ID(s):
1816372
PAR ID:
10298439
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
Page Range / eLocation ID:
434 to 445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Gilbert–Varshamov bound non-constructively establishes the existence of binary codes of distance 1/2−є/2 and rate Ω(є2). In a breakthrough result, Ta-Shma [STOC 2017] constructed the first explicit family of nearly optimal binary codes with distance 1/2−є/2 and rate Ω(є2+α), where α → 0 as є → 0. Moreover, the codes in Ta-Shma’s construction are є-balanced, where the distance between distinct codewords is not only bounded from below by 1/2−є/2, but also from above by 1/2+є/2. Polynomial time decoding algorithms for (a slight modification of) Ta-Shma’s codes appeared in [FOCS 2020], and were based on the Sum-of-Squares (SoS) semidefinite programming hierarchy. The running times for these algorithms were of the form NOα(1) for unique decoding, and NOє,α(1) for the setting of “gentle list decoding”, with large exponents of N even when α is a fixed constant. We derive new algorithms for both these tasks, running in time Õє(N). Our algorithms also apply to the general setting of decoding direct-sum codes. Our algorithms follow from new structural and algorithmic results for collections of k-tuples (ordered hypergraphs) possessing a “structured expansion” property, which we call splittability. This property was previously identified and used in the analysis of SoS-based decoding and constraint satisfaction algorithms, and is also known to be satisfied by Ta-Shma’s code construction. We obtain a new weak regularity decomposition for (possibly sparse) splittable collections W ⊆ [n]k, similar to the regularity decomposition for dense structures by Frieze and Kannan [FOCS 1996]. These decompositions are also computable in near-linear time Õ(|W |), and form a key component of our algorithmic results. 
    more » « less
  2. Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with a set y ⊆ [n], such that (x, y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω(n) communication even to get within statistical distance 1 − β^n of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω(√n) communication is required to get within some constant statistical distance ε > 0 of the uniform distribution over all pairs of disjoint sets of size √n. 
    more » « less
  3. We introduce fast-decodable indexing schemes for edit distance which can be used to speed up edit distance computations to near-linear time if one of the strings is indexed by an indexing string I. In particular, for every length n and every ε >0, one can in near linear time construct a string I ∈ Σ′n with |Σ′| = Oε(1), such that, indexing any string S ∈ Σn, symbol-by-symbol, with I results in a string S′ ∈ Σ″n where Σ″ = Σ × Σ′ for which edit distance computations are easy, i.e., one can compute a (1+ε)-approximation of the edit distance between S′ and any other string in O(n (log n)) time. Our indexing schemes can be used to improve the decoding complexity of state-of-the-art error correcting codes for insertions and deletions. In particular, they lead to near-linear time decoding algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi; STOC ‘17] and faster decoding algorithms for list-decodable insertion-deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP ‘18]. Interestingly, the latter codes are a crucial ingredient in the construction of fast-decodable indexing schemes. 
    more » « less
  4. List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance. 
    more » « less
  5. Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x ⊆ [ n ] and Bob ends up with a set y ⊆ [ n ], such that ( x , y ) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant β < 1, this requires Ω ( n ) communication even to get within statistical distance 1− β n of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS 1998) proved that Ω (√ n ) communication is required to get within some constant statistical distance ɛ > 0 of the uniform distribution over all pairs of disjoint sets of size √ n . 
    more » « less