Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $$X^\star$$ from linear measurements $$b_i = \langle A_i, X^\star \rangle$$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $$A_i$$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $$X^\star$$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems.
more »
« less
A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery
We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory.
more »
« less
- PAR ID:
- 10063534
- Date Published:
- Journal Name:
- International Conference on Artificial Intelligence and Statistics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Can linear systems be solved faster than matrix multiplication? While there has been remarkable progress for the special cases of graph structured linear systems, in the general setting, the bit complexity of solving an $$n \times n$$ linear system $Ax=b$ is $$\tilde{O}(n^\omega)$$, where $$\omega < 2.372864$$ is the matrix multiplication exponent. Improving on this has been an open problem even for sparse linear systems with poly$(n)$ condition number. In this paper, we present an algorithm that solves linear systems in sparse matrices asymptotically faster than matrix multiplication for any $$\omega > 2$$. This speedup holds for any input matrix $$A$$ with $$o(n^{\omega -1}/\log(\kappa(A)))$$ non-zeros, where $$\kappa(A)$$ is the condition number of $$A$$. For poly$(n)$-conditioned matrices with $$\tilde{O}(n)$$ nonzeros, and the current value of $$\omega$$, the bit complexity of our algorithm to solve to within any $$1/\text{poly}(n)$$ error is $$O(n^{2.331645})$$. Our algorithm can be viewed as an efficient, randomized implementation of the block Krylov method via recursive low displacement rank factorizations. It is inspired by the algorithm of [Eberly et al. ISSAC `06 `07] for inverting matrices over finite fields. In our analysis of numerical stability, we develop matrix anti-concentration techniques to bound the smallest eigenvalue and the smallest gap in eigenvalues of semi-random matrices.more » « less
-
A fundamental problem in machine learning is to understand how neural networks make accurate predictions, while seemingly bypassing the curse of dimensionality. A possible explanation is that common training algorithms for neural networks implicitly perform dimensionality reduction—a process called feature learning. Recent work [A. Radhakrishnan, D. Beaglehole, P. Pandit, M. Belkin,Science383, 1461–1467 (2024).] posited that the effects of feature learning can be elicited from a classical statistical estimator called the average gradient outer product (AGOP). The authors proposed Recursive Feature Machines (RFMs) as an algorithm that explicitly performs feature learning by alternating between 1) reweighting the feature vectors by the AGOP and 2) learning the prediction function in the transformed space. In this work, we develop theoretical guarantees for how RFM performs dimensionality reduction by focusing on the class of overparameterized problems arising in sparse linear regression and low-rank matrix recovery. Specifically, we show that RFM restricted to linear models (lin-RFM) reduces to a variant of the well-studied Iteratively Reweighted Least Squares (IRLS) algorithm. Furthermore, our results connect feature learning in neural networks and classical sparse recovery algorithms and shed light on how neural networks recover low rank structure from data. In addition, we provide an implementation of lin-RFM that scales to matrices with millions of missing entries. Our implementation is faster than the standard IRLS algorithms since it avoids forming singular value decompositions. It also outperforms deep linear networks for sparse linear regression and low-rank matrix completion.more » « less
-
In this paper, we focus on a matrix factorization-based approach for robust recovery of low-rank asymmetric matrices from corrupted measurements. We propose an Overparameterized Preconditioned Subgradient Algorithm (OPSA) and provide, for the first time in the literature, linear convergence rates independent of the rank of the sought asymmetric matrix in the presence of gross corruptions. Our work goes beyond existing results in preconditioned-type approaches addressing their current limitation, i.e., the lack of convergence guarantees in the case of asymmetric matrices of unknown rank. By applying our approach to (robust) matrix sensing, we highlight its merits when the measurement operator satisfies a mixed-norm restricted isometry property. Lastly, we present extensive numerical experiments that validate our theoretical results and demonstrate the effectiveness of our approach for different levels of overparameterization and corruption from outliers.more » « less
-
We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of low-dimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking advantage of the side information. To do so, we use the self-expressive property of the data, searching for a sparse representation of each column of matrix as a combination of a few other columns. More specifically, we propose a factorization of the data matrix as the product of side information matrices with an unknown interaction matrix, under which each column of the data matrix can be reconstructed using a sparse combination of other columns. As our proposed optimization, searching for missing entries and sparse coefficients, is non-convex and NP-hard, we propose a lifting framework, where we couple sparse coefficients and missing values and define an equivalent optimization that is amenable to convex relaxation. We also propose a fast implementation of our convex framework using a Linearized Alternating Direction Method. By extensive experiments on both synthetic and real data, and, in particular, by studying the problem of multi-label learning, we demonstrate that our method outperforms existing techniques in both low-rank and high-rank data regimes.more » « less
An official website of the United States government

