skip to main content


Search for: All records

Award ID contains: 1652539

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a nonconvex estimator for the covariate adjusted precision matrix estimation problem in the high dimensional regime, under sparsity constraints. To solve this estimator, we propose an alternating gradient descent algorithm with hard thresholding. Compared with existing methods along this line of research, which lack theoretical guarantees in optimization error and/or statistical error, the proposed algorithm not only is computationally much more efficient with a linear rate of convergence, but also attains the optimal statistical rate up to a logarithmic factor. Thorough experiments on both synthetic and real data support our theory. 
    more » « less
  2. We propose a primal-dual based framework for analyzing the global optimality of nonconvex low-rank matrix recovery. Our analysis are based on the restricted strongly convex and smooth conditions, which can be verified for a broad family of loss functions. In addition, our analytic framework can directly handle the widely-used incoherence constraints through the lens of duality. We illustrate the applicability of the proposed framework to matrix completion and one-bit matrix completion, and prove that all these problems have no spurious local minima. Our results not only improve the sample complexity required for characterizing the global optimality of matrix completion, but also resolve an open problem in Ge et al. (2017) regarding one-bit matrix completion. Numerical experiments show that primal-dual based algorithm can successfully recover the global optimum for various low-rank problems. 
    more » « less
  3. We provide a second-order stochastic differential equation (SDE), which characterizes the continuous-time dynamics of accelerated stochastic mirror descent (ASMD) for strongly convex functions. This SDE plays a central role in designing new discrete-time ASMD algorithms via numerical discretization, and providing neat analyses of their convergence rates based on Lyapunov functions. Our results suggest that the only existing ASMD algorithm, namely, AC-SA proposed in Ghadimi & Lan (2012) is one instance of its kind, and we can actually derive new instances of ASMD with fewer tuning parameters. This sheds light on revisiting accelerated stochastic optimization through the lens of SDEs, which can lead to a better understanding of acceleration in stochastic optimization, as well as new simpler algorithms. Numerical experiments on both synthetic and real data support our theory. 
    more » « less
  4. We revisit the inductive matrix completion problem that aims to recover a rank-r matrix with ambient dimension d given n features as the side prior information. The goal is to make use of the known n features to reduce sample and computational complexities. We present and analyze a new gradient-based non-convex optimization algorithm that converges to the true underlying matrix at a linear rate with sample complexity only linearly depending on n and logarithmically depending on d. To the best of our knowledge, all previous algorithms either have a quadratic dependency on the number of features in sample complexity or a sub-linear computational convergence rate. In addition, we provide experiments on both synthetic and real world data to demonstrate the effectiveness of our proposed algorithm. 
    more » « less
  5. We propose a stochastic variance-reduced cubic regularized Newton method (SVRC) for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an $(\epsilon,\sqrt{\epsilon})$-approximate local minimum within $\tilde{O}(n^{4/5}/\epsilon^{3/2})$ second-order oracle calls, which outperforms the state-of-the-art cubic regularization algorithms including subsampled cubic regularization. Our work also sheds light on the application of variance reduction technique to high-order non-convex optimization methods. Thorough experiments on various non-convex optimization problems support our theory. 
    more » « less
  6. We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve $\epsilon$ accuracy in 2-Wasserstein distance, our algorithm achieves $\tilde O\big(n+\kappa^{2}d^{1/2}/\epsilon+\kappa^{4/3}d^{1/3}n^{2/3}/\epsilon^{2/3}%\wedge\frac{\kappa^2L^{-2}d\sigma^2}{\epsilon^2} \big)$ gradient complexity (i.e., number of component gradient evaluations), which outperforms the state-of-the-art HMC and stochastic gradient HMC methods in a wide regime. We also extend our algorithm for sampling from smooth and general log-concave distributions, and prove the corresponding gradient complexity as well. Experiments on both synthetic and real data demonstrate the superior performance of our algorithm. 
    more » « less
  7. We present a new framework to analyze accelerated stochastic mirror descent through the lens of continuous-time stochastic dynamic systems. It enables us to design new algorithms, and perform a unified and simple analysis of the convergence rates of these algorithms. More specifically, under this framework, we provide a Lyapunov function based analysis for the continuous-time stochastic dynamics, as well as several new discrete-time algorithms derived from the continuous-time dynamics. We show that for general convex objective functions, the derived discrete-time algorithms attain the optimal convergence rate. Empirical experiments corroborate our theory. 
    more » « less
  8. We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory. 
    more » « less