Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks. 
                        more » 
                        « less   
                    
                            
                            Simplifying Reward Design through Divide-and-Conquer
                        
                    
    
            Designing a good reward function is essential to robot planning and reinforcement learning, but it can also be challenging and frustrating. The reward needs to work across multiple different environments, and that often requires many iterations of tuning. We introduce a novel divide-and- conquer approach that enables the designer to specify a reward separately for each environment. By treating these separate reward functions as observations about the underlying true reward, we derive an approach to infer a common reward across all environments. We conduct user studies in an abstract grid world domain and in a motion planning domain for a 7-DOF manipulator that measure user effort and solution quality. We show that our method is faster, easier to use, and produces a higher quality solution than the typical method of designing a reward jointly across all environments. We additionally conduct a series of experiments that measure the sensitivity of these results to different properties of the reward design task, such as the number of environments, the number of feasible solutions per environment, and the fraction of the total features that vary within each environment. We find that independent reward design outperforms the standard, joint, reward design process but works best when the design problem can be divided into simpler subproblems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1734633
- PAR ID:
- 10063840
- Date Published:
- Journal Name:
- Robotics: Science and Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks.more » « less
- 
            A key goal of software engineering research is to improve the environments, tools, languages, and techniques programmers use to efficiently create quality software. Successfully designing these tools and demonstrating their effectiveness involves engaging with tool users — software engineers. Researchers often want to conduct user studies of software engineers to collect direct evidence. However, running user studies can be difficult, and researchers may lack solution strategies to overcome the barriers, so they may avoid user studies. To understand the challenges researchers face when conducting programmer user studies, we interviewed 26 researchers. Based on the analysis of interview data we contribute: (i) a taxonomy of 18 barriers researchers encounter; (ii) 23 solution strategies some researchers use to address 8 of the 18 barriers in their own studies; and (iii) 4 design ideas, which we adapted from the behavioral science community, that may lower 8 additional barriers. To validate the design ideas, we held an in-person all-day focus group with 16 researchers.more » « less
- 
            This paper addresses the problem of inventing and using hierarchical representations for stochastic robot-planning problems. Rather than using hand-coded state or action representations as input, it presents new methods for learning how to create a high-level action representation for long-horizon, sparse reward robot planning problems in stochastic settings with unknown dynamics. After training, this system yields a robot-specific but environment independent planning system. Given new problem instances in unseen stochastic environments, it first creates zero-shot options (without any experience on the new environment) with dense pseudo-rewards and then uses them to solve the input problem in a hierarchical planning and refinement process. Theoretical results identify sufficient conditions for completeness of the presented approach. Extensive empirical analysis shows that even in settings that go beyond these sufficient conditions, this approach convincingly outperforms baselines by 2x in terms of solution time with orders of magnitude improvement in solution quality.more » « less
- 
            The physical design of a robot and the policy that controls its motion are inherently coupled, and should be determined according to the task and environment. In an increasing number of applications, data-driven and learning-based approaches, such as deep reinforcement learning, have proven effective at designing control policies. For most tasks, the only way to evaluate a physical design with respect to such control policies is empirical---i.e., by picking a design and training a control policy for it. Since training these policies is time-consuming, it is computationally infeasible to train separate policies for all possible designs as a means to identify the best one. In this work, we address this limitation by introducing a method that jointly optimizes over the physical design and control network. Our approach maintains a distribution over designs and uses reinforcement learning to optimize a control policy to maximize expected reward over the design distribution. We give the controller access to design parameters to allow it to tailor its policy to each design in the distribution. Throughout training, we shift the distribution towards higher-performing designs, eventually converging to a design and control policy that are jointly optimal. We evaluate our approach in the context of legged locomotion, and demonstrate that it discovers novel designs and walking gaits, outperforming baselines across different settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    