skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CONDITIONAL LR TESTS FOR MOMENT CONDITION MODELS
An influential paper by Kleibergen (2005, Econometrica 73, 1103–1123) introduces Lagrange multiplier (LM) and conditional likelihood ratio-like (CLR) tests for nonlinear moment condition models. These procedures aim to have good size performance even when the parameters are unidentified or poorly identified. However, the asymptotic size and similarity (in a uniform sense) of these procedures have not been determined in the literature. This paper does so. This paper shows that the LM test has correct asymptotic size and is asymptotically similar for a suitably chosen parameter space of null distributions. It shows that the CLR tests also have these properties when the dimension p of the unknown parameter θ equals 1. When p ≥ 2, however, the asymptotic size properties are found to depend on how the conditioning statistic, upon which the CLR tests depend, is weighted. Two weighting methods have been suggested in the literature. The paper shows that the CLR tests are guaranteed to have correct asymptotic size when p ≥ 2 when the weighting is based on an estimator of the variance of the sample moments, i.e., moment-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151–175) rank statistic. The paper also determines a formula for the asymptotic size of the CLR test when the weighting is based on an estimator of the variance of the sample Jacobian. However, the results of the paper do not guarantee correct asymptotic size when p ≥ 2 with the Jacobian-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151–175) rank statistic, because two key sample quantities are not necessarily asymptotically independent under some identification scenarios. Analogous results for confidence sets are provided. Even for the special case of a linear instrumental variable regression model with two or more right-hand side endogenous variables, the results of the paper are new to the literature.  more » « less
Award ID(s):
1656313
PAR ID:
10064079
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Econometric Theory
Volume:
33
Issue:
05
ISSN:
0266-4666
Page Range / eLocation ID:
1046 to 1080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces a new identification‐ and singularity‐robust conditional quasi‐likelihood ratio (SR‐CQLR) test and a new identification‐ and singularity‐robust Anderson and Rubin (1949) (SR‐AR) test for linear and nonlinear moment condition models. Both tests are very fast to compute. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For example, in i.i.d. scenarios, all that is required is that the moment functions and their derivatives have 2 +  γ bounded moments for some γ  > 0. No conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions. The SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification (for all k  ≥  p , where k and p are the numbers of moment conditions and parameters, respectively). The SR‐CQLR test reduces asymptotically to Moreira's CLR test when p  = 1 in the homoskedastic linear IV model. The same is true for p  ≥ 2 in most, but not all, identification scenarios. We also introduce versions of the SR‐CQLR and SR‐AR tests for subvector hypotheses and show that they have correct asymptotic size under the assumption that the parameters not under test are strongly identified. The subvector SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification. 
    more » « less
  2. Adaptive experimental designs can dramatically improve efficiency in randomized trials. But with adaptively collected data, common estimators based on sample means and inverse propensity-weighted means can be biased or heavy-tailed. This poses statistical challenges, in particular when the experimenter would like to test hypotheses about parameters that were not targeted by the data-collection mechanism. In this paper, we present a class of test statistics that can handle these challenges. Our approach is to adaptively reweight the terms of an augmented inverse propensity-weighting estimator to control the contribution of each term to the estimator’s variance. This scheme reduces overall variance and yields an asymptotically normal test statistic. We validate the accuracy of the resulting estimates and their CIs in numerical experiments and show that our methods compare favorably to existing alternatives in terms of mean squared error, coverage, and CI size. 
    more » « less
  3. Abstract We consider the construction of confidence bands for survival curves under the outcome‐dependent stratified sampling. A main challenge of this design is that data are a biased dependent sample due to stratification and sampling without replacement. Most literature on regression approximates this design by Bernoulli sampling but variance is generally overestimated. Even with this approximation, the limiting distribution of the inverse probability weighted Kaplan–Meier estimator involves a general Gaussian process, and hence quantiles of its supremum is not analytically available. In this paper, we provide a rigorous asymptotic theory for the weighted Kaplan–Meier estimator accounting for dependence in the sample. We propose the novel hybrid method to both simulate and bootstrap parts of the limiting process to compute confidence bands with asymptotically correct coverage probability. Simulation study indicates that the proposed bands are appropriate for practical use. A Wilms tumor example is presented. 
    more » « less
  4. Summary In this paper, we develop a systematic theory for high-dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U-type statistic to test linear hypotheses and establish a high-dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be used to deal with the classical one-way multivariate analysis of variance, and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting-based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings. 
    more » « less
  5. In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. (2018). Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling ratio, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. Pilot estimators are required to calculate subsampling probabilities and to correct biases in un-weighted estimators; interestingly, even if pilot estimators are inconsistent, the proposed method still produce consistent and asymptotically normal estimators. 
    more » « less