skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Odd degree number fields with odd class number
Award ID(s):
1701437
PAR ID:
10064138
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Duke Mathematical Journal
Volume:
167
Issue:
5
ISSN:
0012-7094
Page Range / eLocation ID:
995 to 1047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract How many copies of a fixed odd cycle, , can a planar graph contain? We answer this question asymptotically for and prove a bound which is tight up to a factor of 3/2 for all other values of . This extends the prior results of Cox and Martin and of Lv, Győri, He, Salia, Tompkins, and Zhu on the analogous question for even cycles. Our bounds result from a reduction to the following maximum likelihood question: which probability mass on the edges of some clique maximizes the probability that edges sampled independently from form either a cycle or a path? 
    more » « less
  2. Elasticity typically refers to a material's ability to store energy, whereas viscosity refers to a material's tendency to dissipate it. In this review, we discuss fluids and solids for which this is not the case. These materials display additional linear response coefficients known as odd viscosity and odd elasticity. We first introduce odd viscosity and odd elasticity from a continuum perspective, with an emphasis on their rich phenomenology, including transverse responses, modified dislocation dynamics, and topological waves. We then provide an overview of systems that display odd viscosity and odd elasticity. These systems range from quantum fluids and astrophysical gases to active and driven matter. Finally, we comment on microscopic mechanisms by which odd viscosity and odd elasticity arise. 
    more » « less