skip to main content


Title: Investigation of the Primary Mechanisms of Cavitation-Induced Damages
Erosion of solid surfaces due to cavitation has been studied for decades. However, it has been a long debate that which mechanism, namely shockwaves, microjets towards the surface, or both, during the cavitation bubble collapse is the primary factor responsible for that erosion. In this project we investigate the small-scale mechanisms of material erosion induced by the collapse of a single cavitation bubble close to a wall. More specifically, our experimental setup includes modification of the initial nucleus size, the maximum bubble radius, the stand-off distance to the wall, the material softness, and the initial flow temperature. We record the evolution of the bubble using high speed cameras as well as the local impacts on the materials. With the help of specifically designed cold-wires, we also measure the temperature in the liquid and in the bubble. Two different methods are used to generate the bubble: (i) an acoustic shockwave of variable intensity, (ii) a YAG laser, which may introduce a high temperature at the start. We also combine the two methods in which the laser initially creates a nucleus, then the shockwave triggers the expansion of the bubble. The objectives of the project are included in this paper, while some first results will be presented at the CAV2018 conference.  more » « less
Award ID(s):
1706003
NSF-PAR ID:
10064145
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cav2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage. We vary the standoff distance ( SD) between the fiber tip and solid boundary under parallel fiber alignment and observe several distinctive features in bubble dynamics. First, long pulsed laser irradiation and solid boundary interaction create an elongated “pear-shaped” bubble that collapses asymmetrically and forms multiple jets in sequence. Second, unlike nanosecond laser-induced cavitation bubbles, jet impact on solid boundary generates negligible pressure transients and causes no direct damage. A non-circular toroidal bubble forms, particularly following the primary and secondary bubble collapses at SD = 1.0 and 3.0 mm, respectively. We observe three intensified bubble collapses with strong shock wave emissions: the intensified bubble collapse by shock wave, the ensuing reflected shock wave from the solid boundary, and self-intensified collapse of an inverted “triangle-shaped” or “horseshoe-shaped” bubble. Third, high-speed shadowgraph imaging and 3D-PCM confirm that the shock origins from the distinctive bubble collapse form either two discrete spots or a “smiling-face” shape. The spatial collapse pattern is consistent with the similar BegoStone surface damage, suggesting that the shockwave emissions during the intensified asymmetric collapse of the pear-shaped bubble are decisive for the solid damage. 
    more » « less
  2. Abstract

    In this work, we present an extensive comparative study between novel titanium nitride nanoparticles (TiN NPs) and commercial gold nanorods (GNR), both dispersed in water and exposed to a pulsed laser‐induced cavitation process. The optical density, shockwave emission, and bubble formation of these solutions were investigated using shadowgraphy, spatial transmittance modulation, and acoustic measurements. TiN nanoparticle solutions exhibited high stability undser a periodic nanosecond pulsed‐laser irradiation, making these nanomaterials promising agents for high‐power applications. In addition, they demonstrated a stronger nonlinear absorption compared to the GNR solutions, and plasma formation at lower laser energies. This study advances our understanding of the optical properties of TiN and discusses significant differences compared to gold, with important implications for future applications of this material in water treatment, nonlinear signal converting, and laser‐induced cavitation for medical implementations, among others.

     
    more » « less
  3. The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions. In this paper, we extend the atomistic simulations to short (hundreds of picoseconds to nanoseconds) laser pulses and focus our attention on the effect of the pulse duration on the mechanisms responsible for the generation of nanoparticles at the initial dynamic stage of laser ablation. Three distinct nanoparticle generation mechanisms operating at different stages of the ablation process and in different parts of the emerging cavitation bubble are identified in the simulations. These mechanisms are (1) the formation of a thin transient metal layer at the interface between the ablation plume and water environment followed by its decomposition into large molten nanoparticles, (2) the nucleation, growth, and rapid cooling/solidification of small nanoparticles at the very front of the emerging cavitation bubble, above the transient interfacial metal layer, and (3) the spinodal decomposition of a part of the ablation plume located below the transient interfacial layer, leading to the formation of a large population of nanoparticles growing in a high-temperature environment through inter-particle collisions and coalescence. The coexistence of the three distinct mechanisms of the nanoparticle formation at the initial stage of the ablation process can be related to the broad nanoparticle size distributions commonly observed in nanosecond PLAL experiments. The strong dependence of the nanoparticle cooling and solidification rates on the location within the low-density metal–water mixing region has important implications for the long-term evolution of the nanoparticle size distribution, as well as for the ability to quench the nanoparticle growth or dope them by adding surface-active agents or doping elements to the liquid environment. 
    more » « less
  4. Although the full form of the Rayleigh–Plesset (RP) equation more accurately depicts the bubble behavior in a cavitating flow than its reduced form, it finds much less application than the latter in the computational fluid dynamic (CFD) simulation due to its high stiffness. The traditional variable time-step scheme for the full form RP equation is difficult to be integrated with the CFD program since it requires a tiny time step at the singularity point for convergence and this step size may be incompatible with time marching of conservation equations. This paper presents two stable and efficient numerical solution schemes based on the finite difference method and Euler method so that the full-form RP equation can be better accepted by the CFD program. By employing a truncation bubble radius to approximate the minimum bubble size in the collapse stage, the proposed schemes solve for the bubble radius and wall velocity in an explicit way. The proposed solution schemes are more robust for a wide range of ambient pressure profiles than the traditional schemes and avoid excessive refinement on the time step at the singularity point. Since the proposed solution scheme can calculate the effects of the second-order term, liquid viscosity, and surface tension on the bubble evolution, it provides a more accurate estimation of the wall velocity for the vaporization or condensation rate, which is widely used in the cavitation model in the CFD simulation. The legitimacy of the solution schemes is manifested by the agreement between the results from these schemes and established ones from the literature. The proposed solution schemes are more robust in face of a wide range of ambient pressure profiles. 
    more » « less
  5. Abstract

    We introduce laser cavitation rheology (LCR) as a minimally-invasive optical method to characterize mechanical properties within the interior of biological and synthetic aqueous soft materials at high strain-rates. We utilized time-resolved photography to measure cavitation bubble dynamics generated by the delivery of focused 500 ps duration laser radiation at λ = 532 nm within fibrin hydrogels at pulse energies ofEp = 12, 18 µJ and within polyethylene glycol (600) diacrylate (PEG (600) DA) hydrogels atEp = 2, 5, 12 µJ. Elastic moduli and failure strains of fibrin and PEG (600) DA hydrogels were calculated from these measurements by determining parameter values which provide the best fit of the measured data to a theoretical model of cavitation bubble dynamics in a Neo-Hookean viscoelastic medium subject to material failure. We demonstrate the use of this method to retrieve the local, interior elastic modulus of these hydrogels and both the radial and circumferential failure strains.

     
    more » « less