skip to main content

Title: Endoscopic hyperspectral imaging: light guide optimization for spectral light source
Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions (~65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss (~99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer more » (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time. « less
Authors:
; ; ;
Award ID(s):
1725937
Publication Date:
NSF-PAR ID:
10064182
Journal Name:
Proc. SPIE 10487, Multimodal Biomedical Imaging XIII, 104870H
Volume:
10487
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyperspectral imaging (HSI) is a spectroscopic technique which captures images at a high contrast over a wide range of wavelengths to show pixel specific composition. Traditional uses of HSI include: satellite imagery, food distribution quality control and digital archaeological reconstruction. Our lab has focused on developing applications of HSI fluorescence imaging systems to study molecule-specific detection for rapid cell signaling events or real-time endoscopic screening. Previously, we have developed a prototype spectral light source, using our modified imaging technique, excitationscanning hyperspectral imaging (HIFEX), coupled to a commercial colonoscope for feasibility testing. The 16 wavelength LED array was combined, using amore »multi-branched solid light guide, to couple to the scope’s optical input. The prototype acquired a spectral scan at near video-rate speeds (~8 fps). The prototype could operate at very rapid wavelength switch speeds, limited to the on/off rates of the LEDs (~10 μs), but imaging speed was limited due to optical transmission losses (~98%) through the solid light guide. Here we present a continuation of our previous work in performing an in-depth analysis of the solid light guide to optimize the optical intensity throughput. The parameters evaluated include: LED intensity input, geometry (branch curvature and combination) and light propagation using outer claddings. Simulations were conducted using a Monte Carlo ray tracing software (TracePro). Results show that transmission within the branched light guide may be optimized through LED focusing lenses, bend radii and smooth tangential branch merges. Future work will test a new fabricated light guide from the optimized model framework.« less
  2. Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While its original applications were in remote sensing, modern uses include agriculture, historical document authentications and medicine. HSI has shown great utility in fluorescence microscopy; however, acquisition speeds have been slow due to light losses associated with spectral filtering. We are currently developing a rapid hyperspectral imaging platform for 5-dimensional imaging (RHIP-5D), a confocal imaging system that will allow users to obtain simultaneous measurements of many fluorescent labels. We have previously reported on optical modeling performance of the system. This previous modelmore »investigated geometrical capability of designing a multifaceted mirror imaging system as an initial approach to sample light at many wavelengths. The design utilized light-emitting diodes (LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide (LLG). The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent results presented here show transmission has increased up to 9% through parametric optimization of each component. Future work will involve system validation using a prototype engineered based on our optimized model. System requirements will be evaluated to determine if potential design changes are needed to improve the system. We will report on spectral resolution to demonstrate feasibility of the RHIP-5D as a promising solution for overcoming current HSI acquisition speed and sensitivity limitations.« less
  3. Positive outcomes for colorectal cancer treatment have been linked to early detection. The difficulty in detecting early lesions is the limited contrast with surrounding mucosa and minimal definitive markers to distinguish between hyperplastic and carcinoma lesions. Colorectal cancer is the 3rd leading cancer for incidence and mortality rates which is potentially linked to missed early lesions which allow for increased growth and metastatic potential. One potential technology for early-stage lesion detection is hyperspectral imaging. Traditionally, hyperspectral imaging uses reflectance spectroscopic data to provide a component analysis, per pixel, of an image in fields such as remote sensing, agriculture, food processingmore »and archaeology. This work aims to acquire higher signal-to-noise fluorescence spectroscopic data, harnessing the autofluorescence of tissue, adding a hyperspectral contrast to colorectal cancer detection while maintaining spatial resolution at video-rate speeds. We have previously designed a multi-furcated LED-based spectral light source to prove this concept. Our results demonstrated that the technique is feasible, but the initial prototype has a high light transmission loss (~98%) minimizing spatial resolution and slowing video acquisition. Here, we present updated results in developing an optical ray-tracing model of light source geometries to maximize irradiance throughput for excitation-scanning hyperspectral imaging. Results show combining solid light guide branches have a compounding light loss effect, however, there is potential to minimize light loss through the use of optical claddings. This simulation data will provide the necessary metrics to verify and validate future physical optical components within the hyperspectral endoscopic system for detecting colorectal cancer.« less
  4. Many hardware approaches have been developed for implementing hyperspectral imaging on fluorescence microscope systems; each with tradeoffs in spectral sensitivity and spectral, spatial, and temporal sampling. For example, tunable filter-based systems typically have limited wavelength switching speeds and sensitivities that preclude high-speed spectral imaging. Here, we present a novel approach combining multiple illumination wavelengths using solid state LEDs in a 2-mirror configuration similar to a Cassegrain reflector assembly. This approach provides spectral discrimination by scanning a range of fluorescence excitation wavelengths, which we have previously shown can improve spectral image acquisition time compared to traditional fluorescence emission-scanning hyperspectral imaging. Inmore »this work, the geometry of the LED and other optical components was optimized. A model of the spectral illuminator was designed using TracePro ray tracing software (Lambda Research Corp.) that included an emitter, lens, Spherical mirror, flat mirror, and liquid light guide input. A parametric sensitivity study was performed to optimize the optical throughput varying the LED viewing angle, properties of the Spherical reflectors, the lens configuration, focal length, and position. The following factors significantly affected the optical throughput: LED viewing angle, lens position, and lens focal length. Several types of configurations were evaluated, and an optimized lens and LED position were determined. Initial optimization results indicate that a 10% optical transmission can be achieved for either a 16 or 32 wavelength system. Future work will include continuing to optimize the ray trace model, prototyping, and experimental testing of the optimized configuration.« less
  5. Push-broom hyperspectral imaging (Pb-HSI) is a powerful technique for obtaining the spectral information along with the spatial information simultaneously for various applications, from remote sensing to chemical imaging. Spatial resolution improvement is beneficial in many instances; however, typical solutions suffer from the limitation of geometric extent, lowered light throughput, or reduced field-of-view (FOV). Sub-pixel shifting (SPS) acquires higher-resolution images, compared to typical imaging approaches, from the deconvolution of low-resolution images acquired with a higher sampling rate. Furthermore, SPS is particularly suited for Pb-HSI due to its scanning nature. In this study, an SPS approach is developed and implemented on amore »Pb-HSI system for plasma optical emission spectroscopy. The preliminary results showed that a periodic deconvolution error was generated in the final SPS Pb-HSI images. The periodic error was traced back to random noise present in the raw/convoluted SPS data and its frequency displays an inverse relationship with the number of sub-pixel samples acquired. Computer modelled data allows studying the effect of varying the relative standard deviation (RSD) in the raw/convoluted SPS data on the final reconstructed SPS images and optimization of noise filtering. The optimized SPS Pb-HSI technique was used to acquire the line-of-sight integrated optical emission maps from an atmospheric pressure micro-capillary dielectric barrier discharge (μDBD). The selected plasma species of interest (He, I, N 2 , N 2 + , and O) yield some insight into the underlying mechanisms. The SPS Pb-HSI technique developed here will allow implementing geometric super-resolution in many applications, for example, it will be used for extracting radially resolved information from Abel's inversion protocols, where improved fitting is expected due to the increase in resolution/data points.« less