skip to main content


Title: Millimeter Wave Communications with Reconfigurable Antennas
The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search.  more » « less
Award ID(s):
1642536
NSF-PAR ID:
10064206
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Communications (ICC-18)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate- one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings. 
    more » « less
  2. The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings. 
    more » « less
  3. In this paper, we propose a generalized millimeter-Wave (mmWave) reconfigurable antenna multiple-input multiple-output (RA-MIMO) architecture that takes advantage of lens antennas. The considered antennas can generate multiple independent beams simultaneously using a single RF chain. This property, together with RA-MIMO, is used to combat small-scale fading and shadowing in mmWave bands. To this end, first, we derive a channel matrix for RA-MIMO. Then, we use rate-one space-time block codes (STBCs), together with phase-shifters at the receive reconfigurable antennas, to suppress the effect of small-scale fading. We consider two kinds of phase shifters: i) ideal which is error-free and ii) digital which adds quantization error. The goal of phase-shifters is to convert a complex-valued channel matrix into real-valued. Hence, it is possible to use rate-one STBCs for any dimension of RA-MIMO. We investigate diversity gain and derive an upper bound for symbol error rate in cases of ideal and digital phase-shifters. We show that RA-MIMO achieves the full-diversity gain with ideal phase-shifters and the full-diversity gain for digital phase-shifters when the number of quantization bits is higher than one. We investigate RA-MIMO in the presence of shadowing. Our analysis demonstrates that, by increasing the dimension of RA-MIMO, the outage probability decreases which means the effect of shadowing decreases. Numerical results verify our theoretical derivations. 
    more » « less
  4. Reconfigurable arrays mold the propagation en- vironment to benefit wireless systems. We use single-port polarization-reconfigurable antennas in a wideband multiple- input multiple-output (MIMO) system and demonstrate the efficacy of reconfiguration techniques based on analytical channel models. We apply a double-directional channel model to show that polarization reconfiguration acts as an additional precoding step on an unpolarized channel. We use Jensen’s inequality to upper bound the spectral efficiency and leverage the relaxed objective to derive closed-form expressions for the optimal polarization angles at each antenna. We also derive upper bounds on the performance of a polarization reconfigurable system and develop an efficient procedure for polarization reconfiguration that aims to maximize these upper bounds. Numerical results show that the proposed simplified methods achieve near-optimal in wideband MIMO settings. 
    more » « less
  5. Millimeter-wave (mmWave) communications is a key enabler towards realizing enhanced Mobile Broadband (eMBB) as a key promise of 5G and beyond, due to the abundance of bandwidth available at mmWave bands. An mmWave coverage map consists of blind spots due to shadowing and fading especially in dense urban environments. Beam-forming employing massive MIMO is primarily used to address high attenuation in the mmWave channel. Due to their ability in manipulating the impinging electromagnetic waves in an energy-efficient fashion, Reconfigurable Intelligent Surfaces (RISs) are considered a great match to complement the massive MIMO systems in realizing the beam-forming task and therefore effectively filling in the mmWave coverage gap. In this paper, we propose a novel RIS architecture, namely RIS-UPA where the RIS elements are arranged in a Uniform Planar Array (UPA). We show how RIS-UPA can be used in an RIS-aided MIMO system to fill the coverage gap in mmWave by forming beams of a custom footprint, with optimized main lobe gain, minimum leakage, and fairly sharp edges. Further, we propose a configuration for RIS-UPA that can support multiple two-way communication pairs, simultaneously. We theoretically obtain closed-form low-complexity solutions for our design and validate our theoretical findings by extensive numerical experiments. 
    more » « less