skip to main content


Title: A New Reconfigurable Antenna MIMO Architecture for mmWave Communication
The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate- one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings.  more » « less
Award ID(s):
1642567
NSF-PAR ID:
10076577
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Communications (ICC)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings. 
    more » « less
  2. In this paper, we propose a generalized millimeter-Wave (mmWave) reconfigurable antenna multiple-input multiple-output (RA-MIMO) architecture that takes advantage of lens antennas. The considered antennas can generate multiple independent beams simultaneously using a single RF chain. This property, together with RA-MIMO, is used to combat small-scale fading and shadowing in mmWave bands. To this end, first, we derive a channel matrix for RA-MIMO. Then, we use rate-one space-time block codes (STBCs), together with phase-shifters at the receive reconfigurable antennas, to suppress the effect of small-scale fading. We consider two kinds of phase shifters: i) ideal which is error-free and ii) digital which adds quantization error. The goal of phase-shifters is to convert a complex-valued channel matrix into real-valued. Hence, it is possible to use rate-one STBCs for any dimension of RA-MIMO. We investigate diversity gain and derive an upper bound for symbol error rate in cases of ideal and digital phase-shifters. We show that RA-MIMO achieves the full-diversity gain with ideal phase-shifters and the full-diversity gain for digital phase-shifters when the number of quantization bits is higher than one. We investigate RA-MIMO in the presence of shadowing. Our analysis demonstrates that, by increasing the dimension of RA-MIMO, the outage probability decreases which means the effect of shadowing decreases. Numerical results verify our theoretical derivations. 
    more » « less
  3. The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search. 
    more » « less
  4. null (Ed.)
    We propose equalization-based data detection algorithms for all-digital millimeter-wave (mmWave) massive multiuser multiple-input multiple-out (MU-MIMO) systems that exploit sparsity in the beamspace domain to reduce complexity. We provide a condition on the number of users, basestation antennas, and channel sparsity for which beamspace equalization can be less complex than conventional antenna-domain processing. We evaluate the performance-complexity trade-offs of existing and new beamspace equalization algorithms using simulations with realistic mmWave channel models. Our results reveal that one of our proposed beamspace equalization algorithms achieves up to 8× complexity reduction under line-of-sight conditions, assuming a sufficiently large number of transmissions within the channel coherence interval. 
    more » « less
  5. Channel feedback is essential in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. Unfortunately, prior work on multiuser MIMO has shown that the feedback overhead scales linearly with the number of base station (BS) antennas, which is large in massive MIMO systems. To reduce the feedback overhead, we propose an angle-of-departure (AoD) adaptive subspace codebook for channel feedback in FDD massive MIMO systems. Our key insight is to leverage the observation that path AoDs vary more slowly than the path gains. Within the angle coherence time, by utilizing the constant AoD information, the proposed AoDadaptive subspace codebook is able to quantize the channel vector in a more accurate way. From the performance analysis, we show that the feedback overhead of the proposed codebook only scales linearly with a small number of dominant (path) AoDs instead of the large number of BS antennas. Moreover, we compare the proposed quantized feedback technique using the AoD-adaptive subspace codebook with a comparable analog feedback method. Extensive simulations show that the proposed AoD-adaptive subspace codebook achieves good channel feedback quality, while requiring low overhead. 
    more » « less