skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dual species Rydberg and collisional interactions in an optical dipole trap
We present progress in demonstrating Rydberg interactions between a single Rb and a single Cs atom simultaneously trapped in a single 976 nm optical tweezer. Rydberg lev- els in heteronuclear systems have different quantum defects, as opposed to homonuclear systems, and can therefore be chosen to minimize the Forster defect and increase the Rydberg interaction strength beyond symmetric Rydberg pairs at comparable energy levels. Additionally, multi-species systems are distinguishable and can be frequency multi- plexed in a straightforward manner. Frequency multiplexing both the state preparation and state readout is used in characterizing elastic and inelastic collision rates between Rb and Cs, as well as enabling crosstalk free ancilla measurements for quantum error correction.  more » « less
Award ID(s):
1720220
PAR ID:
10064298
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Bulletin of American Physical Society, DAMOP 2018
Volume:
63
Issue:
5
Page Range / eLocation ID:
E01 100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present progress in demonstrating Rydberg interactions between a single Rb and a single Cs atom simultaneously trapped in a single 1064 nm optical tweezer. Rydberg levels in heteronuclear systems have different quantum defects, as opposed to homonuclear systems, and can therefore be chosen to minimize the Forster defect and increase the Rydberg interaction strength beyond symmetric Rydberg pairs at comparable energy levels. Additionally, multispecies systems are distinguishable and can be frequency multiplexed in a straightforward manner, enabling crosstalk free ancilla measurements for quantum error correction. To determine the feasibility of co-trapped heteronuclear samples for quantum information and communication applications, we also measure the heteronuclear collision rates between single Rb and single Cs atoms and resolve differences in the hyperfine collision rates. Photoassociation rate of the atoms into a molecular state via the 1064 nm trap laser is also measured. 
    more » « less
  2. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  3. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  4. Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML). At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation. Canonically, a QP features input qubits and one output qubit, and is used to determine whether an input state belongs to a specific class. Rydberg atoms, with their extended coherence times and scalable spatial configurations, provide an ideal platform for implementing QPs. In this work, we explore the implementation of QPs on Rydberg atom arrays, assessing their performance in tasks such as phase classification between Z2, Z3, Z4 and disordered phases, achieving high accuracy, including in the presence of noise. We also perform multi-class entanglement classification by extending the QP model to include multiple output qubits, achieving 95\% accuracy in distinguishing noisy, high-fidelity states based on separability. Additionally, we discuss the experimental realization of QPs on Rydberg platforms using both single-species and dual-species arrays, and examine the error bounds associated with approximating continuous functions. 
    more » « less
  5. Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1 and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4 with impressive system sizes5,6 and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9,10,11,12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14 have lagged behind competitors15,16 and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19,20,21,22, we achieve a Bell state fidelity of ≥0.9971−13+10, which improves to ≥0.9985−12+7 when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22,23,24. 
    more » « less