skip to main content


Search for: All records

Award ID contains: 1720220

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods have increased the observed Bell state fidelity to FBell = 0.86(2). Accounting for errors in state preparation and measurement (SPAM) we infer a fidelity of F−SPAM Bell = 0.89. Including errors in single qubit operations we infer that the Rydberg mediated CZ gate has a fidelity of F−SPAM CZ= 0.91. Comparison with a detailed error model shows that further improvement in fidelity will require colder atoms and lasers with reduced noise. 
    more » « less
  5. Optically trapped neutral atoms are one of several leading approaches for scalable quantum information processing. When prepared in electronic ground states in deep optical lattices atomic qubits are weakly interacting with long coherence times. Excitation to Rydberg states turns on strong interactions which enable fast gates and entanglement generation. I will present quantum logic experiments with a 2D array of blue detuned lines that traps more than 100 Cesium atom qubits. The array is randomly loaded from a MOT and an optical tweezer steered by a 2D acousto-optic deflector is used to ll subregions of the array. Progress towards high fidelity entangling gates based on Rydberg excitation lasers with lower noise, and optimized optical polarization and magnetic eld settings will be shown. 
    more » « less
  6. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  7. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  8. We present progress in demonstrating Rydberg interactions between a single Rb and a single Cs atom simultaneously trapped in a single 1064 nm optical tweezer. Rydberg levels in heteronuclear systems have different quantum defects, as opposed to homonuclear systems, and can therefore be chosen to minimize the Forster defect and increase the Rydberg interaction strength beyond symmetric Rydberg pairs at comparable energy levels. Additionally, multispecies systems are distinguishable and can be frequency multiplexed in a straightforward manner, enabling crosstalk free ancilla measurements for quantum error correction. To determine the feasibility of co-trapped heteronuclear samples for quantum information and communication applications, we also measure the heteronuclear collision rates between single Rb and single Cs atoms and resolve differences in the hyperfine collision rates. Photoassociation rate of the atoms into a molecular state via the 1064 nm trap laser is also measured. 
    more » « less