skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Injection Attack on Decentralized Optimization
This paper studies the security aspect of gossip-based decentralized optimization algorithms for multi agent systems against data injection attacks. Our contributions are two-fold. First, we show that the popular distributed projected gradient method (by Nedi´c et al.) can be attacked by coordinated insider attacks, in which the attackers are able to steer the final state to a point of their choosing. Second, we propose a metric that can be computed locally by the trustworthy agents processing their own iterates and those of their neighboring agents. This metric can be used by the trustworthy agents to detect and localize the attackers. We conclude the paper by supporting our findings with numerical experiments.  more » « less
Award ID(s):
1714672
PAR ID:
10064339
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. 
    more » « less
  2. null (Ed.)
    This paper studies a defense approach against one or more swarms of adversarial agents. In our earlier work, we employed a closed formation (“StringNet”) of defending agents (defenders) around a swarm of adversarial agents (attackers) to confine their motion within given bounds, and guide them to a safe area. The adversarial agents were assumed to remain close enough to each other, i.e., within a prescribed connectivity region. To handle situations when the attackers no longer stay within such a connectivity region, but rather split into smaller swarms (clusters) to maximize the chance or impact of attack, this paper proposes an approach to learn the attacking sub-swarms and reassign defenders toward the attackers. We use a “Density-based Spatial Clustering of Application with Noise (DBSCAN)” algorithm to identify the spatially distributed swarms of the attackers. Then, the defenders are assigned to each identified swarm of attackers by solving a constrained generalized assignment problem. We also provide conditions under which defenders can successfully herd all the attackers. The efficacy of the approach is demonstrated via computer simulations, as well as hardware experiments with a fleet of quadrotors. 
    more » « less
  3. The website fingerprinting attack allows a low-resource attacker to compromise the privacy guarantees provided by privacy enhancing tools such as Tor. In response, researchers have proposed defenses aimed at confusing the classification tools used by attackers. As new, more powerful attacks are frequently developed, raw attack accuracy has proven inadequate as the sole metric used to evaluate these defenses. In response, two security metrics have been proposed that allow for evaluating defenses based on hand-crafted features often used in attacks. Recent state-of-the-art attacks, however, use deep learning models capable of automatically learning abstract feature representations, and thus the proposed metrics fall short once again. In this study we examine two security metrics and (1) show how these methods can be extended to evaluate deep learning-based website fingerprinting attacks, and (2) compare the security metrics and identify their shortcomings. 
    more » « less
  4. Distributed protocols should be robust to both benign malfunction (e.g. packet loss or delay) and attacks (e.g. message replay). In this paper we take a formal approach to the automated synthesis of attackers, i.e. adversarial processes that can cause the protocol to malfunction. Specifically, given a formal threat model capturing the distributed protocol model and network topology, as well as the placement, goals, and interface of potential attackers, we automatically synthesize an attacker. We formalize four attacker synthesis problems - across attackers that always succeed versus those that sometimes fail, and attackers that may attack forever versus those that may not - and we propose algorithmic solutions to two of them. We report on a prototype implementation called KORG and its application to TCP as a case-study. Our experiments show that KORG can automatically generate well-known attacks for TCP within seconds or minutes. 
    more » « less
  5. Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful “0-day” attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those “0-day” attacks to at least “n-day” attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches. 
    more » « less