skip to main content


Title: Secure Mobile Software Development with Vulnerability Detectors in Static Code Analysis
The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of our software, and militate the consequence of damages of data loss caused by potential malicious attacking. However, many software developer professionals lack the necessary security knowledge and skills at the development stage and Secure Mobile Software Development (SMSD) is not yet well represented in current computing curriculum. In this paper we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We categorized the common mobile vulnerability for developers based on OWASP mobile security recommendations and developed detectors to meet the SMSD needs in industry and education.  more » « less
Award ID(s):
1723586
NSF-PAR ID:
10064393
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Symposium on Networks, Computers and Communications (ISNCC 2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development life cycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time in Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time. 
    more » « less
  2. The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of our software, and militate the consequence of damages of data loss caused by potential malicious attacking. However, many software developer professionals lack the necessary security knowledge and skills at the development stage and Secure Mobile Software Development (SMSD) is not yet well represented in current computing curriculum. In this paper we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We categorized the common mobile vulnerability for developers based on OWASP mobile security recommendations and developed detectors to meet the SMSD needs in industry and education. 
    more » « less
  3. The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines. 
    more » « less
  4. As mobile computing is now becoming more and more popular, the security threats to mobile applications are also growing explosively. Mobile app flaws and security defects could open doors for hackers to break into them and access sensitive information. Most vulnerabilities should be addressed in the early stage of mobile software development. However, many software development professionals lack awareness of the importance of security vulnerability and the necessary security knowledge and skills at the development stage. The combination of the prevalence of mobile devices and the rapid growth of mobile threats has resulted in a shortage of secure software development professionals. Many schools offer mobile app development courses in computing curriculum; however, secure software development is not yet well represented in most schools' computing curriculum. This paper addresses the needs of authentic and active pedagogical learning materials for SSD and challenges of building Secure Software Development (SSD) capacity through effective, engaging, and investigative approaches. In this paper, we present an innovative authentic and active SSD learning approach through a collection of transferrable learning modules with hands-on companion labs based on the Open Web Application Security Project (OWASP) recommendations. The preliminary feedback from students is positive. Students have gained hands-on real world SSD learning experiences with Android mobile platform and also greatly promoted self-efficacy and confidence in their mobile SSD learning. 
    more » « less
  5. As mobile computing is now becoming more and more popular, the security threats to mobile applications are also growing explosively. Mobile app flaws and security defects could open doors for hackers to break into them and access sensitive information. Most vulnerabilities should be addressed in the early stage of mobile software development. However, many software development professionals lack awareness of the importance of security vulnerability and the necessary security knowledge and skills at the development stage. The combination of the prevalence of mobile devices and the rapid growth of mobile threats has resulted in a shortage of secure software development professionals. Many schools offer mobile app development courses in computing curriculum; however, secure software development is not yet well represented in most schools' computing curriculum. This paper addresses the needs of authentic and active pedagogical learning materials for SSD and challenges of building Secure Software Development (SSD) capacity through effective, engaging, and investigative approaches. In this paper, we present an innovative authentic and active SSD learning approach through a collection of transferrable learning modules with hands-on companion labs based on the Open Web Application Security Project (OWASP) recommendations. The preliminary feedback from students is positive. Students have gained hands-on real world SSD learning experiences with Android mobile platform and also greatly promoted self-efficacy and confidence in their mobile SSD learning. 
    more » « less