skip to main content


Title: Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte
Abstract

Solid polymer electrolytes (SPEs) promise to improve the safety and performance of lithium ion batteries (LIBs). However, the low ionic conductivity and transference number of conventional poly(ethylene oxide) (PEO)‐based SPEs preclude their widespread implementation. Herein, crosslinked poly(tetrahydrofuran) (xPTHF) is introduced as a promising polymer matrix for “beyond PEO” SPEs. The crosslinking procedure creates thermally stable, mechanically robust membranes for use in LIBs. Molecular dynamics and density functional theory (DFT) simulations accompanied by7Li NMR measurements show that the lower spatial concentration of oxygen atoms in the xPTHF backbone leads to loosened O–Li+coordination. This weakened interaction enhances ion transport; xPTHF has a high lithium transference number of 0.53 and higher lithium conductivity than a xPEO SPE of the same length at room temperature. It is demonstrated that organic additives further weaken the O–Li+interaction, enabling room temperature ionic conductivity of 1.2 × 10−4S cm−1with 18 wt%N,N‐dimethylformamide in xPTHF. In a solid‐state LIB application, neat xPTHF SPEs cycle with near theoretical capacity for 100 cycles at 70 °C, with rate capability up to 1 C. The plasticized xPTHF SPEs operate at room temperature while maintaining respectable rate capability and capacity. The novel PTHF system demonstrated here represents an exciting platform for future studies involving SPEs.

 
more » « less
NSF-PAR ID:
10064402
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
8
Issue:
25
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This present study illustrates the synthesis and preparation of polyoxanorbornene‐based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring‐opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li‐ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10−4S cm−1at room temperature and excellent electrochemical performance, including high‐rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium‐metal batteries (LMB).

     
    more » « less
  2. Abstract

    Incorporating nanofillers is one of the promising approaches for simultaneously boosting the ionic conductivity and mechanical properties of solid polymer electrolytes (SPEs). However, effectively creating faster ion‐conduction pathways via nanofillers still remains a big challenge. Herein, core–shell protein–ceramic nanowires for more efficiently building fast ion‐conduction networks in SPEs are reported. The core–shell protein–ceramic nanowires are fabricated via in situ growth of protein coating on the electrospun TiO2nanowires in a subtly controlled protein‐denaturation process. It is demonstrated that the core–shell protein@TiO2nanowires effectively facilitate ion‐conduction. As a result, the ionic conductivity, mechanical properties, electrochemical stability, and even Li+transference number of the SPEs with core–shell protein@TiO2nanowires are significantly enhanced. The contributions from the 1D morphology of the protein@TiO2nanowires, and more importantly, the favorable protein structure for further promoting ion‐conduction at the polymer–filler interfaces are analyzed. It is believed that the protein plays a pivotal role in dissociating lithium salts, which benefits from the strong interactions between protein and ions, making the protein serve as a unique “natural channel” for rapidly conducting Li+. This study initiates an effective method of promoting ionic conductivity and constructing faster ion‐conduction networks in SPEs via combining bio‐ and nanotechnology.

     
    more » « less
  3. null (Ed.)
    Polyethylene oxide (PEO)-based polymers are commonly studied for use as a solid polymer electrolyte for rechargeable Li-ion batteries; however, simultaneously achieving sufficient mechanical integrity and ionic conductivity has been a challenge. To address this problem, a customized polymer architecture is demonstrated wherein PEO bottle-brush arms are hyperbranched into a star architecture and then functionalized with end-grafted, linear PEO chains. The hierarchical architecture is designed to minimize crystallinity and therefore enhance ion transport via hyperbranching, while simultaneously addressing the need for mechanical integrity via the grafting of long, PEO chains ( M n = 10,000). The polymers are doped with lithium bis(trifluoromethane) sulfonimide (LiTFSI), creating hierarchically hyperbranched (HB) solid polymer electrolytes. Compared to electrolytes prepared with linear PEO of equivalent molecular weight, the HB PEO electrolytes increase the room temperature ionic conductivity from ∼2.5 × 10 –6 to 2.5 × 10 −5  S/cm. The conductivity increases by an additional 50% by increasing the block length of the linear PEO in the bottle brush arms from M n = 1,000 to 2,000. The mechanical properties are improved by end-grafting linear PEO ( M n = 10,000) onto the terminal groups of the HB PEO bottle-brush. Specifically, the Young’s modulus increases by two orders of magnitude to a level comparable to commercial PEO films, while only reducing the conductivity by 50% below the HB electrolyte without grafted PEO. This study addresses the trade-off between ion conductivity and mechanical properties, and shows that while significant improvements can be made to the mechanical properties with hierarchical grafting of long, linear chains, only modest gains are made in the room temperature conductivity. 
    more » « less
  4. Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability. 
    more » « less
  5. Abstract

    Single‐ion conducting polymer electrolytes are of interest for use with advanced battery electrodes such as lithium metal, but achieving sufficiently high conductivity has been challenging. In this work, a model system containing charged sites that are precisely spaced along the polymer backbone is explored. Precision sulfonated poly(4‐phenylcyclopentene) lithium salt (p5PhS‐Li) with a high degree of sulfonation (> 90%) is synthesized and blended with poly(ethylene oxide) (PEO) to investigate the thermodynamic and transport properties. Melting point depression is measured via differential scanning calorimetry, ionic conductivity,κ, is determined using electrochemical impedance spectroscopy, and the fraction of current carried by Li+is estimated based on steady‐state current measurements. In conjunction with a density measurement, melting point depression is used to find an effective Flory–Huggins interaction parameter,χeff=   − 0.21, suggesting miscibility of the blend.κspans a large range from 2 × 10−11to 2 × 10−7S cm−1over the composition and temperature range investigated. The fraction of charge carried by lithium ions also spans a significant range from 0.12 in majority PEO blend to 0.98 in majorityp5PhS‐Li blend. This study addresses several limitations of sulfonated polystyrene and opens up the possibility of precisely controlling the spacing of other anion types.

     
    more » « less