skip to main content


Title: Transport and distribution of terrestrial plant biomarkers in modern lake sediments: implications for paleoenvironmental reconstructions in the Adirondack Mountains
Terrestrial plant biomarkers preserved in lake sediments are commonly used in paleoenvironmental reconstructions. Basin-specific transport pathways and distribution controls of plant biomarkers, however, are poorly understood. This study mapped the distribution of sedimentary n-alkanes sourced from vascular plant waxes to delineate possible transport pathways and quantified the contribution of terrestrial and aquatic input. We combine these data with existing leaf and pollen taphonomy literature and sediment focusing models to develop a better understanding of the controls on plant biomarker transport within lake basins. Here, we report the spatial distribution of sedimentary n-alkanes, the carbon isotope values and C:N ratios of bulk sediment, and percent organic matter from three lakes in the Adirondack Mountains, NY. Preliminary carbon isotope data and n-alkane concentrations within each lake suggests a large terrestrial input. Bulk sediment carbon isotope values ranged from - 26‰ to -32‰ consistent with carbon isotope values of modern terrestrial vegetation. The concentrations of long-chain n-alkanes (indicative of higher land plants), moreover, are much higher than short-chain n-alkanes (indicative of aquatic and microbial activity) by almost two times. By contrast, C:N ratios range from 11-14 indicating a mix of aquatic and terrestrial contribution to the lake’s total organic matter. We combined high-resolution sonar data with the sediment analyses to identify basin- specific controls on the distributions of n-alkanes and bulk sediment carbon isotopes. The statistical categorization of sediment zones based on relative hardness and roughness along the lake bottom delineates where organic material is concentrated. For the terrestrially sourced plant waxes, we measured low n-alkane concentrations in sandy littoral sediments relative to deeper sediments towards the main depo-center. Together, this information validates sediment focusing models and suggests that terrestrial carbon and n-alkanes are preferentially transported to the main depo-center of the lake. These observations highlight important relationships between basin-specific sediment properties and processes controlling the transport and deposition of n- alkanes.  more » « less
Award ID(s):
1636744
NSF-PAR ID:
10064460
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
6th annual Midwestern Geobiology Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds. 
    more » « less
  2. Abstract

    Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes.

     
    more » « less
  3. Abstract

    The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region.

     
    more » « less
  4. Abstract. Plant wax n-alkane chain length distribution and isotopeshave been studied in modern ecosystems as proxies to reconstruct vegetationand climate of the past. However, most paleo-proxies focus on eitherconcentrations or isotopes, whereas both carry complementary information onthe mixing sources. We propose a multi-source mixing model in a Bayesianframework that evaluates both chain length distributions and isotopessimultaneously. The model consists of priors that include user-definedsource groups and their associated parametric distributions of n-alkaneconcentration and δ13C. The mixing process involves newlydefined mixing fractions such as fractional leaf mass contribution (FLMC)that can be used in vegetation reconstruction. Markov Chain Monte Carlo isused to generate samples from the posterior distribution of these parametersconditioned on both data types. We present three case studies from distinctsettings. The first involves n-C27, n-C29, and n-C31 alkanes in lake surface sediments of Lake Qinghai, China. The model provides more specific interpretations on the n-alkane input from aquatic sources than the conventional Paq proxy. The second involves n-C29, n-C31, and n-C33 alkanes in lake surface sediments in Cameroon, western Africa. Themodel produces mixing fractions of forest C3, savanna C3, andC4 plants, offering additional information on the dominant biomescompared to the traditional two-end-member mixing regime. The third couplesthe vegetation source model to a hydrogen isotope model component, usingbiome-specific apparent fractionation factors (εa) toestimate the δ2H of mean annual precipitation. By leveraging chain length distribution, δ13C, and δ2H data offour n-alkane chains, the model produces estimated precipitation δ2H with relatively small uncertainty limits. The new framework shows promise for interpretation of paleo-data but could be further improved by including processes associated with n-alkane turnover in plants, transport,and integration into sedimentary archives. Future studies on modern plantsand catchment systems will be critical to develop calibration datasets thatadvance the strength and utility of the framework. 
    more » « less
  5. Abstract. Biogeochemical cycling in the semi-enclosed Arctic Ocean is stronglyinfluenced by land–ocean transport of carbon and other elements and isvulnerable to environmental and climate changes. Sediments of the ArcticOcean are an important part of biogeochemical cycling in the Arctic andprovide the opportunity to study present and historical input and the fate oforganic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differencesbetween the Arctic regions and to study Arctic biogeochemical budgets. Tothis end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) wasestablished to curate data primarily on concentrations of organic carbon(OC) and OC isotopes (δ13C, Δ14C) yet also ontotal N (TN) as well as terrigenous biomarkers and other sedimentgeochemical and physical properties. This new database builds on thepublished literature and earlier unpublished records through an extensiveinternational community collaboration. This paper describes the establishment, structure and current status ofCASCADE. The first public version includes OC concentrations in surfacesediments at 4244 oceanographic stations including 2317 with TNconcentrations, 1555 with δ13C-OC values and 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers(high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols).CASCADE also includes data from 326 sediment cores, retrieved by shallowbox or multi-coring, deep gravity/piston coring, or sea-bottom drilling.The comprehensive dataset reveals large-scale features of both OC contentand OC sources between the shelf sea recipients. This offers insight intorelease of pre-aged terrigenous OC to the East Siberian Arctic shelf andyounger terrigenous OC to the Kara Sea. Circum-Arctic sediments therebyreveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments andfacilitates a wide array of future empirical and modeling studies of theArctic carbon cycle. The database is openly and freely available online(https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in variousmachine-readable data formats (data tables, GIS shapefile, GIS raster), andalso provides ways for contributing data for future CASCADE versions. Wewill continuously update CASCADE with newly published and contributed dataover the foreseeable future as part of the database management of the BolinCentre for Climate Research at Stockholm University. 
    more » « less