Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.more » « less
- 
            Terrestrial plant biomarkers preserved in lake sediments are commonly used in paleoenvironmental reconstructions. Basin-specific transport pathways and distribution controls of plant biomarkers, however, are poorly understood. This study mapped the distribution of sedimentary n-alkanes sourced from vascular plant waxes to delineate possible transport pathways and quantified the contribution of terrestrial and aquatic input. We combine these data with existing leaf and pollen taphonomy literature and sediment focusing models to develop a better understanding of the controls on plant biomarker transport within lake basins. Here, we report the spatial distribution of sedimentary n-alkanes, the carbon isotope values and C:N ratios of bulk sediment, and percent organic matter from three lakes in the Adirondack Mountains, NY. Preliminary carbon isotope data and n-alkane concentrations within each lake suggests a large terrestrial input. Bulk sediment carbon isotope values ranged from - 26‰ to -32‰ consistent with carbon isotope values of modern terrestrial vegetation. The concentrations of long-chain n-alkanes (indicative of higher land plants), moreover, are much higher than short-chain n-alkanes (indicative of aquatic and microbial activity) by almost two times. By contrast, C:N ratios range from 11-14 indicating a mix of aquatic and terrestrial contribution to the lake’s total organic matter. We combined high-resolution sonar data with the sediment analyses to identify basin- specific controls on the distributions of n-alkanes and bulk sediment carbon isotopes. The statistical categorization of sediment zones based on relative hardness and roughness along the lake bottom delineates where organic material is concentrated. For the terrestrially sourced plant waxes, we measured low n-alkane concentrations in sandy littoral sediments relative to deeper sediments towards the main depo-center. Together, this information validates sediment focusing models and suggests that terrestrial carbon and n-alkanes are preferentially transported to the main depo-center of the lake. These observations highlight important relationships between basin-specific sediment properties and processes controlling the transport and deposition of n- alkanes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available