skip to main content


Title: Fostering high school students’ conceptual understanding and argumentation performance in science through Quality Talk discussions
Abstract

Flourishing in today's global society requires citizens that are both intelligent consumers and producers of scientific understanding. Indeed, the modern world is facing ever‐more complex problems that require innovative ways of thinking about, around, and with science. As numerous educational stakeholders have suggested, such skills and abilities are not innate and must, therefore, be taught (e.g., McNeill & Krajcik,Journal of Research in Science Teaching,45(1), 53–78. 2008). However, such instruction requires a fundamental shift in science pedagogy so as to foster knowledge and practices like deep, conceptual understanding, model‐based reasoning, and oral and written argumentation where scientific evidence is evaluated (National Research Council,Next Generation Science Standards: For States, by States, Washington, DC: The National Academies Press, 2013). The purpose of our quasi‐experimental study was to examine the effectiveness of Quality Talk Science, a professional development model and intervention, in fostering changes in teachers’ and students’ discourse practices as well as their conceptual understanding and scientific argumentation. Findings revealed treatment teachers’ and students’ discourse practices better reflected critical‐analytic thinking and argumentation at posttest relative to comparison classrooms. Similarly, at posttest treatment students produced stronger written scientific arguments than comparison students. Students’ growth in conceptual understanding was nonsignificant. These findings suggest discourse interventions such as Quality Talk Science can improve high‐school students’ ability to engage in scientific argumentation.

 
more » « less
NSF-PAR ID:
10064547
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
102
Issue:
6
ISSN:
0036-8326
Page Range / eLocation ID:
p. 1239-1264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple‐case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.

     
    more » « less
  2. Abstract  
    more » « less
  3. To support students’ learning, a wide body of research and instructional reforms emphasize students’ engagement in productive talk with rigorous thinking in science classrooms. However, despite efforts, productive science talk is not yet prevalent in many classrooms. To gain more insight into the generation of productive talk in science classrooms, we explored a group of science teachers’ instructional vision and practices with respect to promoting classroom discourse. Our analysis revealed variations in teachers’ instructional visions and quality of instruction in their classrooms. In most cases, there was an alignment between teachers’ instructional vision and practices. We observed high quality instruction in terms of facilitating productive discussions and rigorous students’ thinking in the classroom of teachers with sophisticated instructional vision. Low instructional quality is observed in the classrooms of teachers with less articulate instructional vision of productive classroom discussion. We contend that exploring science teachers’ instructional vision and their instructional practices together can provide a powerful lens to identify the areas of improvement for promoting high-quality instruction in many science classrooms. Moreover, working towards the development of a shared vision of instruction by stakeholders and teachers can support enactment of high-quality science instruction. 
    more » « less
  4. Abstract

    Supporting student engagement in science practices requires rethinking how classroom learning occurs, specifically in terms of the interactions that help students build their own knowledge. The types of student‐driven exchanges fundamental to the science practice of argumentation differ greatly from traditional classroom interactions. To help classroom talk shift toward encompassing this practice, it is important to develop understandings of discourse patterns related to argumentation. Several analytic techniques have been used to examine a classroom's engagement in argumentation. However, new methodologies are needed for capturing and characterizing the complex, social dimensions of this science practice. This study explores social network analysis (SNA) as a means by which to attend to this demand. Specifically, this study utilizes SNA on data from two middle school classrooms that participated in an argumentation discussion called a science seminar. Sociograms (images of social relations derived from the SNA) offered visualizations of interactions during the science seminars, highlighting who exactly partook in the various aspects of argumentation, how, and to what degree. Findings suggest the importance of argumentation research examining ways to better support changes in classroom interactions. This study also points to the benefits of using SNA with other types of representations to capture a classroom's argumentation.

     
    more » « less
  5. Abstract

    In order to deepen students' understanding of natural phenomenon and how scientific knowledge is constructed, it is critical that science teachers learn how to engage students in productive scientific argumentation. Simulations for teachers are one possible solution to providing practice‐based spaces where novices can approximate the work of facilitating argumentation‐focused science discussions. This study's purpose is to examine how preservice elementary teachers (PSETs) engage in this ambitious teaching practice within an online simulated classroom composed of five upper elementary student avatars. In this study, which is part of a larger research project, we developed and used four performance tasks to provide opportunities for PSETs to practice facilitating argumentation‐focused science discussions within a simulated classroom. The student avatars were controlled on the backend by a human‐in‐the‐loop who was trained to respond to the teachers' prompts in real time using predesigned student thinking profiles and specific technology, such as voice modulation software. We used analysis of transcripts from the PSETs' video‐recorded discussions to examine how the PSETs engaged the student avatars in scientific argumentation, with particular attention to the teaching moves that supported argument construction and argument critique. We also used survey and interview data to examine how the PSETs viewed the usefulness of these simulation‐based tools to support their learning. Findings show that there was variability in the extent to which the PSETs engaged the student avatars in argument construction and argument critique and the teaching moves that the PSETs used to do so. Results also indicated that PSETs strongly perceive the value of using such tools within teacher education. Implications for the potential of simulations to provide insights into novices' ability to engage students in scientific argumentation and to support them in learning in and from their practice, including how to productively integrate these tools in teacher education, are discussed.

     
    more » « less