skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teachers' Instructional Vision and Practices around Promoting Productive Talk in Science Classrooms
To support students’ learning, a wide body of research and instructional reforms emphasize students’ engagement in productive talk with rigorous thinking in science classrooms. However, despite efforts, productive science talk is not yet prevalent in many classrooms. To gain more insight into the generation of productive talk in science classrooms, we explored a group of science teachers’ instructional vision and practices with respect to promoting classroom discourse. Our analysis revealed variations in teachers’ instructional visions and quality of instruction in their classrooms. In most cases, there was an alignment between teachers’ instructional vision and practices. We observed high quality instruction in terms of facilitating productive discussions and rigorous students’ thinking in the classroom of teachers with sophisticated instructional vision. Low instructional quality is observed in the classrooms of teachers with less articulate instructional vision of productive classroom discussion. We contend that exploring science teachers’ instructional vision and their instructional practices together can provide a powerful lens to identify the areas of improvement for promoting high-quality instruction in many science classrooms. Moreover, working towards the development of a shared vision of instruction by stakeholders and teachers can support enactment of high-quality science instruction.  more » « less
Award ID(s):
1720587
PAR ID:
10330778
Author(s) / Creator(s):
;
Date Published:
Journal Name:
National Association for Research in Science Teaching Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less
  2. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less
  3. Abstract Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms. 
    more » « less
  4. null (Ed.)
    One way to support teachers' learning to facilitate the recent reform vision (NRC, 2012) in their classrooms is through professional development (PD). We explored a biology teacher’s (Monica) sensemaking during the PD that focused on facilitating productive science classroom discourse to understand her responses to the PD in terms of teaching science by engaging students in productive talk in science classrooms. Using both video and interview data, we analyzed the process of her sensemaking about facilitating (productive) talk during the PD and the meaning she was making of productive talk. Our analysis indicated that Monica participated in sensemaking mostly about her students' participation in talk. Throughout the PD conversations, she rarely focused on what she could do (or could have done) to facilitate student talk without the PD facilitators' pressing. This is supported by our analysis of the interviews with Monica, which showed that the sense that she was making about productive talk mostly focuses on students' contributions to the talk and their accountability to reasoning, scientific knowledge, and sensemaking. These findings provide implications for facilitating teachers’ sensemaking around new instructional practices and reforms within PD contexts. 
    more » « less
  5. Reform-based rigorous instruction which fosters all students’ thinking and sensemaking is possible; however, it is not yet prevalent in science classrooms. This study explored promoting rigorous instruction by enhancing students’ intellectual work through cognitively demanding tasks. We examined instruction during the five lessons in a science classroom. We found variations in students’ intellectual work across the lessons. Our analysis revealed that the instructional practices associated with promoting students’ engagement in rigorous thinking were consequential for promoting students’ epistemic agency. Thus, we argue that maintaining and enhancing demand on students’ intellectual engagement in cognitively demanding tasks requires the work of providing opportunities for students to learn science-as-practice by acting as epistemic agents. These findings can inform professional efforts regarding rigorous instruction. 
    more » « less