skip to main content

Title: Identifying articles relevant to drug-drug interaction: Addressing class imbalance
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The IEEE International Conference on Bioinformatics and Biomedicine
Page Range / eLocation ID:
1141 to 1147
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pharmacoinformatics research has experienced a great deal of successes in detecting drug‐induced adverse events (AEs) using large‐scale health record databases. In the era of polypharmacy, pharmacoinformatics faces many new challenges, and two significant challenges are to detect high‐order drug interactions and to handle strongly correlated drugs. In this article, we propose a super‐combo‐drug test (SupCD‐T) to address the aforementioned two challenges. SupCD‐T detects drug interactions by identifying optimal drug combinations with increased AE risks. In addition, SupCD‐T increases the statistical powers to detect single‐drug effects by combining strongly correlated drugs. Although SupCD‐T does not distinguish single‐drug effects from their combination effects, it is noticeably more powerful in selecting an individual drug effect in the multiple regression analysis, where confounding justification between two correlated drugs reduces the power in testing the individual drug effects on AEs. Our simulation studies demonstrate that SupCD‐T has generally better power comparing with the multiple regression analysis. In addition, SupCD‐T is able to select meaningful drug combinations (eg, highly coprescribed drugs). Using electronic health record database, we illustrate the utility of SupCD‐T and discover a number of drug combinations that have increased risk in myopathy. Some novel drug combinations have not yet been investigated and reported in the pharmacology research.

    more » « less
  2. The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across the United States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex, as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g., the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides insights into the consequences of choosing an inappropriate inventory policy when disruptions take place. 
    more » « less