Systemic, non-viral siRNA delivery for cancer treatment is mainly achieved via condensation by cationic materials ( e.g. , lipids and cationic polymers), which nevertheless, suffers from poor serum stability, non-specific tissue interaction, and unsatisfactory membrane activity against efficient in vivo gene knockdown. Here, we report the design of a metastable, cancer-targeting siRNA delivery system based on two functional polymers, PVBLG-8, a cationic, helical cell-penetrating polypeptide, and poly( l -glutamic acid) (PLG), an anionic random-coiled polypeptide. PVBLG-8 with rigid, linear structure showed weak siRNA condensation capability, and PLG with flexible chains was incorporated as a stabilizer which provided sufficient molecular entanglement with PVBLG-8 to encapsulate the siRNA within the polymeric network. The obtained PVBLG-8/siRNA/PLG nanoparticles (PSP NPs) with positive charges were sequentially coated with additional amount of PLG, which reversed the surface charge from positive to negative to yield the metastable PVBLG-8/siRNA/PLG@PLG (PSPP) NPs. The PSPP NPs featured desired serum stability during circulation to enhance tumor accumulation via the enhanced permeability and retention (EPR) effect. Upon acidification in the tumor extracellular microenvironment and intracellular endosomes, the partial protonation of PLG on PSPP NPs surface would lead to dissociation of PLG coating from NPs, exposure of the highly membrane-active PVBLG-8, and surfacemore »
The influence of polyethylene glycol passivation on the surface plasmon resonance induced photothermal properties of gold nanorods
Gold nanorods (AuNRs) possess unique photothermal properties due to their strong plasmonic absorption in the near-infrared region of the electromagnetic spectrum. They have been explored widely as an alternative or a complement to chemotherapy in cancer treatment. However, the use of AuNRs as an injectable medicine is greatly hindered by their stability in biological media. Therefore, studies have been focused on improving the stability of AuNRs by introducing biocompatible surface functionalizations such as polyethylene glycol (PEG) coatings. However, these coatings can affect heat conduction and alter their photothermal behavior. Herein, we studied how functionalization of AuNRs with PEG chains of different molecular weights determined the temperature distribution of suspensions under near-infrared irradiation, cell uptake in vitro , and hyperthermia-induced cytotoxicity. Thermogravimetric analysis of the PEG-conjugated AuNRs exhibited slightly different PEG mass fractions of 12.0%, 12.7%, and 18.5% for PEG chains with molecular weights of 2, 5, and 10 kDa, respectively, implying distinct structures for PEG brushes. When exposed to near-infrared radiation, we found greater temperatures and temperature gradients for longer PEG chains, while rapid aggregation was observed in unmodified (raw) AuNRs. The effect of the PEG coating on heat transport was investigated using molecular dynamics simulations, which revealed the atomic more »
- Award ID(s):
- 1726332
- Publication Date:
- NSF-PAR ID:
- 10064772
- Journal Name:
- Nanoscale
- ISSN:
- 2040-3364
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism is the organic halogen, chloral hydrate, which is known to generate free protons upon exposure to ionizing radiation. Once protons are liberated, a drop in internal pH of the liposome promotes destabilization of the lipid bilayer and escape of the liposomal contents. In proof of principle studies, we assessed RTL radiation-release of fluorescent tracers upon exposure to a low pH extracellular environment or exposure to X-ray irradiation. Biodistribution imaging before and after irradiation demonstrated a preferential uptake and release of the liposomes and their cargo at the site of local tumor irradiation. Finally, a potent metabolite of the commonly usedmore »
-
Cell-based therapies have the potential to transform the treatment of many diseases. One of the key challenges relating to cell therapies is to modify the cell surface with molecules to modulate cell functions such as targeting, adhesion, migration, and cell–cell interactions, or to deliver drug cargos. Noncovalent insertion of lipid-based amphiphilic molecules on the cell surface is a rapid and nontoxic approach for modifying cells with a variety of bioactive molecules without affecting the cellular functions and viability. A wide variety of lipid amphiphiles, including proteins/peptides, carbohydrates, oligonucleotides, drugs, and synthetic polymers have been designed to spontaneously anchor on the plasma membranes. These molecules typically contain a functional component, a spacer, and a long chain diacyl lipid. Though these molecular constructs appeared to be stably tethered on cell surfaces both in vitro and in vivo under static situations, their stability under mechanical stress (e.g., in the blood flow) remains unclear. Using diacyl lipid-polyethylene glycol (lipo-PEG) conjugates as model amphiphiles, here we report the effect of molecular structures on the amphiphile stability on cell surface under mechanical stress. We analyzed the retention kinetics of lipo-PEGs on erythrocytes in vitro and in vivo and found that under mechanical stress, both the molecularmore »
-
Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severemore »
-
Many studies were conducted to find possible strategies for reducing the urban heat island (UHI) effect during the hot summer months. One of the largest contributors to UHI is the role that paved surfaces play in the warming of urban areas. Solar-reflective cool pavements stay cooler in the sun than traditional pavements. Pavement reflectance can be enhanced by using a reflective surface coating. The use of heat-reflective coatings to combat the effects of pavements on UHI was pre-viously studied but no consistent conclusions were drawn. To find a conclusive solution, this work focuses on the abilities of heat-reflective pavement coatings to reduce UHI in varying weather conditions. Within this context, both concrete and asphalt samples were subject to a series of per-formance tests when applied to a heat-reflective coating, under the influence of normal, windy, and humid conditions. During these tests, the samples were heated with a halogen lamp and the surface temperature profile was measured using an infrared thermal camera. The air temperature was recorded with a thermometer, and the body temperature at multiple depths of the samples was measured using thermocouples. The results from these tests show that the effectiveness of the heat-reflective coating varies under different weathermore »